These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29198837)

  • 1. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint.
    Arkell K; Knutson HK; Frederiksen SS; Breil MP; Nilsson B
    J Chromatogr A; 2018 Jan; 1532():98-104. PubMed ID: 29198837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying steep pareto fronts in multicomponent adsorption using a novel elliptical method.
    Balamirtham H; Retnam BG; Aravamudan K
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):80336-80352. PubMed ID: 35716298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.
    Johansson K; Frederiksen SS; Degerman M; Breil MP; Mollerup JM; Nilsson B
    J Chromatogr A; 2015 Feb; 1381():64-73. PubMed ID: 25595534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A parallel pore and surface diffusion model for predicting the adsorption and elution profiles of lispro insulin and two impurities in gradient-elution reversed phase chromatography.
    Chung PL; Bugayong JG; Chin CY; Wang NH
    J Chromatogr A; 2010 Dec; 1217(52):8103-20. PubMed ID: 21074775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of preparative chromatographic separation of multiple rare earth elements.
    Max-Hansen M; Ojala F; Kifle D; Borg N; Nilsson B
    J Chromatogr A; 2011 Dec; 1218(51):9155-61. PubMed ID: 22079482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Modeling of Reversed-Phase Chromatography of Insulins with Potassium Chloride and Ethanol as Mobile-Phase Modulators.
    Arkell K; Breil MP; Frederiksen SS; Nilsson B
    ACS Omega; 2017 Jan; 2(1):136-146. PubMed ID: 30023511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Modeling of Reversed-Phase Chromatography of Insulins within the Temperature Range 10-40 °C.
    Arkell K; Breil MP; Frederiksen SS; Nilsson B
    ACS Omega; 2018 Feb; 3(2):1946-1954. PubMed ID: 30023818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-objective optimization of chromatographic rare earth element separation.
    Knutson HK; Holmqvist A; Nilsson B
    J Chromatogr A; 2015 Oct; 1416():57-63. PubMed ID: 26375205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of peptides and intact proteins by electrostatic repulsion reversed phase liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2014 Dec; 1374():112-121. PubMed ID: 25488252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based monitoring of industrial reversed phase chromatography to predict insulin variants.
    Roch P; Sellberg A; Andersson N; Gunne M; Hauptmann P; Nilsson B; Mandenius CF
    Biotechnol Prog; 2019 Jul; 35(4):e2813. PubMed ID: 30938075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous optimization of pH and binary organic composition by grid form modeling of the retention behavior in reversed-phase ultra high-performance liquid chromatography.
    Sasaki T; Todoroki K; Toyo'oka T
    J Pharm Biomed Anal; 2017 Nov; 146():251-260. PubMed ID: 28888712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop.
    Lee CG; Choi JH; Park C; Wang NL; Mun S
    J Chromatogr A; 2017 Dec; 1527():80-90. PubMed ID: 29096923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of isocratic supercritical fluid chromatography for enantiomer separation.
    Wenda C; Haghpanah R; Rajendran A; Amanullah M
    J Chromatogr A; 2011 Jan; 1218(1):162-70. PubMed ID: 21112590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained optimization of a preparative ion-exchange step for antibody purification.
    Degerman M; Jakobsson N; Nilsson B
    J Chromatogr A; 2006 Apr; 1113(1-2):92-100. PubMed ID: 16497317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation of gradient elution with serially-coupled columns Part II: Multi-linear gradients.
    Ortiz-Bolsico C; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2014 Dec; 1373():51-60. PubMed ID: 25465000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective global optimization (MOGO): Algorithm and case study in gradient elution chromatography.
    Freier L; von Lieres E
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28008726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the pore size of reversed phase materials on peptide purification processes.
    Gétaz D; Dogan N; Forrer N; Morbidelli M
    J Chromatogr A; 2011 May; 1218(20):2912-22. PubMed ID: 21450297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of an improved single-column chromatographic process for the separation of enantiomers.
    Kazi MK; Medi B; Amanullah M
    J Chromatogr A; 2012 Mar; 1231():22-30. PubMed ID: 22364669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis.
    Muller M; Tredoux AGJ; de Villiers A
    J Chromatogr A; 2018 Oct; 1571():107-120. PubMed ID: 30100525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.