These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29198987)

  • 21. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria.
    Tronrud DE; Wen J; Gay L; Blankenship RE
    Photosynth Res; 2009 May; 100(2):79-87. PubMed ID: 19437128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of quaternary structure on the stability of Fenna-Matthews-Olson (FMO) antenna complexes.
    Saer RG; Schultz RL; Blankenship RE
    Photosynth Res; 2019 Apr; 140(1):39-49. PubMed ID: 30315435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On Excitation Energy Transfer within the Baseplate BChl
    Jassas M; Goodson C; Blankenship RE; Jankowiak R; Kell A
    J Phys Chem B; 2019 Nov; 123(46):9786-9791. PubMed ID: 31660744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna-Matthews-Olson Trimer from Chlorobaculum tepidum.
    Kell A; Blankenship RE; Jankowiak R
    J Phys Chem A; 2016 Aug; 120(31):6146-54. PubMed ID: 27438068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical Study of the Spectral Differences of the Fenna-Matthews-Olson Protein from Different Species and Their Mutants.
    Huai Z; Tong Z; Mei Y; Mo Y
    J Phys Chem B; 2021 Aug; 125(30):8313-8324. PubMed ID: 34314175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical oxidation of the FMO antenna protein from Chlorobaculum tepidum.
    Bina D; Blankenship RE
    Photosynth Res; 2013 Sep; 116(1):11-9. PubMed ID: 23828400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.
    Buck DR; Savikhin S; Struve WS
    Biophys J; 1997 Jan; 72(1):24-36. PubMed ID: 8994590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intensity dependence of the excited state lifetimes and triplet conversion yield in the Fenna-Matthews-Olson antenna protein.
    Orf GS; Niedzwiedzki DM; Blankenship RE
    J Phys Chem B; 2014 Feb; 118(8):2058-69. PubMed ID: 24490821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium
    Xie H; Lyratzakis A; Khera R; Koutantou M; Welsch S; Michel H; Tsiotis G
    Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2216734120. PubMed ID: 36693097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constrained geometric dynamics of the Fenna-Matthews-Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer.
    Fokas AS; Cole DJ; Chin AW
    Photosynth Res; 2014 Dec; 122(3):275-92. PubMed ID: 25034014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein.
    Wen J; Zhang H; Gross ML; Blankenship RE
    Biochemistry; 2011 May; 50(17):3502-11. PubMed ID: 21449539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox effects on the bacteriochlorophyll a-containing Fenna-Matthews-Olson protein from Chlorobium tepidum.
    Zhou W; LoBrutto R; Lin S; Blankenship RE
    Photosynth Res; 1994 Jul; 41(1):89-96. PubMed ID: 11539857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.
    Thilagam A
    J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting.
    Wen J; Zhang H; Gross ML; Blankenship RE
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6134-9. PubMed ID: 19339500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A permanent hole burning study of the FMO antenna complex of the green sulfur bacterium Prosthecochloris aestuarii.
    Franken EM; Neerken S; Louwe RJ; Amesz J; Aartsma TJ
    Biochemistry; 1998 Apr; 37(15):5046-51. PubMed ID: 9548735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface.
    Higashi M; Saito S
    J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Normal mode analysis of spectral density of FMO trimers: Intra- and intermonomer energy transfer.
    Klinger A; Lindorfer D; Müh F; Renger T
    J Chem Phys; 2020 Dec; 153(21):215103. PubMed ID: 33291900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a.
    Pedersen MØ; Pham L; Steensgaard DB; Miller M
    Biochemistry; 2008 Feb; 47(5):1435-41. PubMed ID: 18177020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii.
    Neerken S; Permentier HP; Francke C; Aartsma TJ; Amesz J
    Biochemistry; 1998 Jul; 37(30):10792-7. PubMed ID: 9692969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
    Jurinovich S; Curutchet C; Mennucci B
    Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.