These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29199208)

  • 1. Spontaneous Preparation of Highly Stable Gold Nanoparticle Stabilized with ω-Sulfonylated Alkylsulfanylaniline.
    Mohieeldin Darwish MI; Takenoshita Y; Hamada T; Onitsuka S; Kurawaki J; Okamura H
    J Oleo Sci; 2017; 66(12):1349-1354. PubMed ID: 29199208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters.
    Choi J; Park S; Stojanović Z; Han HS; Lee J; Seok HK; Uskoković D; Lee KH
    Langmuir; 2013 Dec; 29(50):15698-703. PubMed ID: 24283573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium borohydride stabilizes very active gold nanoparticle catalysts.
    Deraedt C; Salmon L; Gatard S; Ciganda R; Hernandez R; Ruiz J; Astruc D
    Chem Commun (Camb); 2014 Nov; 50(91):14194-6. PubMed ID: 25283248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles.
    Boken J; Thatai S; Khurana P; Prasad S; Kumar D
    Talanta; 2015 Jan; 132():278-84. PubMed ID: 25476309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization Studies of Conditions for Biological Synthesis of AuNPs in Various Shapes Using Plant Extract (Ocimum sanctum).
    Sneha K; Yn LS; Yeoung-Sang Y
    J Nanosci Nanotechnol; 2015 Jan; 15(1):326-9. PubMed ID: 26328353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study.
    Venkatpurwar V; Shiras A; Pokharkar V
    Int J Pharm; 2011 May; 409(1-2):314-20. PubMed ID: 21376108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis.
    Singh S; Vidyarthi AS; Nigam VK; Dev A
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):6-12. PubMed ID: 23438180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster.
    Yang X; Shi M; Zhou R; Chen X; Chen H
    Nanoscale; 2011 Jun; 3(6):2596-601. PubMed ID: 21566802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of gold octahedra by direct reduction of HAuCl4 in an aqueous solution.
    Li W; Xia Y
    Chem Asian J; 2010 Jun; 5(6):1312-6. PubMed ID: 20376878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling.
    Basu S; Ghosh SK; Kundu S; Panigrahi S; Praharaj S; Pande S; Jana S; Pal T
    J Colloid Interface Sci; 2007 Sep; 313(2):724-34. PubMed ID: 17540397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction.
    Liu X; Xu H; Xia H; Wang D
    Langmuir; 2012 Sep; 28(38):13720-6. PubMed ID: 22954316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic investigation of seeded growth in triblock copolymer stabilized gold nanoparticles.
    Sabir TS; Rowland LK; Milligan JR; Yan D; Aruni AW; Chen Q; Boskovic DS; Kurti RS; Perry CC
    Langmuir; 2013 Mar; 29(12):3903-11. PubMed ID: 23473268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile preparative method for Au-core, block copolymer-shell nanoparticles by UV irradiation of polystyrene-block-poly (2-vinyl pyridine)/HAuCl4 solutions.
    Yang H; Xu L; Li X; Zhang X
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6340-7. PubMed ID: 21137728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable oligomeric clusters of gold nanoparticles: preparation, size distribution, derivatization, and physical and biological properties.
    Smithies O; Lawrence M; Testen A; Horne LP; Wilder J; Altenburg M; Bleasdale B; Maeda N; Koklic T
    Langmuir; 2014 Nov; 30(44):13394-404. PubMed ID: 25317930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable ligand-free stellated polyhedral gold nanoparticles for sensitive plasmonic detection.
    Keunen R; Macoretta D; Cathcart N; Kitaev V
    Nanoscale; 2016 Feb; 8(5):2575-83. PubMed ID: 26786359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the dendritic polymer PAMAM to form gold nanoparticles in the protein cage thermosome.
    Nussbaumer MG; Bisig C; Bruns N
    Chem Commun (Camb); 2016 Aug; 52(69):10537-9. PubMed ID: 27491621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stable positively charged dendron-encapsulated gold nanoparticles.
    Cho TJ; MacCuspie RI; Gigault J; Gorham JM; Elliott JT; Hackley VA
    Langmuir; 2014 Apr; 30(13):3883-93. PubMed ID: 24625049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH induced protein-scaffold biosynthesis of tunable shape gold nanoparticles.
    Zhang X; He X; Wang K; Ren F; Qin Z
    Nanotechnology; 2011 Sep; 22(35):355603. PubMed ID: 21828895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.