BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 29199364)

  • 1. In situ reduced graphene oxide-based polyurethane sponge hollow tube for continuous oil removal from water surface.
    Hao J; Wang Z; Xiao C; Zhao J; Chen L
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4837-4845. PubMed ID: 29199364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery.
    Periasamy AP; Wu WP; Ravindranath R; Roy P; Lin GL; Chang HT
    Mar Pollut Bull; 2017 Jan; 114(2):888-895. PubMed ID: 27863883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent.
    Liu Y; Ma J; Wu T; Wang X; Huang G; Liu Y; Qiu H; Li Y; Wang W; Gao J
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10018-26. PubMed ID: 24050505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity.
    He Y; Liu Y; Wu T; Ma J; Wang X; Gong Q; Kong W; Xing F; Liu Y; Gao J
    J Hazard Mater; 2013 Sep; 260():796-805. PubMed ID: 23856309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic modification of polyurethane foam for oil spill cleanup.
    Li H; Liu L; Yang F
    Mar Pollut Bull; 2012 Aug; 64(8):1648-53. PubMed ID: 22749062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H
    Xu C; Jiao C; Yao R; Lin A; Jiao W
    Environ Pollut; 2018 Feb; 233():194-200. PubMed ID: 29078123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.
    Keshavarz A; Zilouei H; Abdolmaleki A; Asadinezhad A
    J Environ Manage; 2015 Jul; 157():279-86. PubMed ID: 25917559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalized three-dimensional graphene sponges for highly efficient crude and diesel oil adsorption.
    Bagoole O; Rahman MM; Shah S; Hong H; Chen H; Al Ghaferi A; Younes H
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23091-23105. PubMed ID: 29860688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water.
    Wang J; Geng G
    Mar Pollut Bull; 2015 Aug; 97(1-2):118-124. PubMed ID: 26092604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication and application of highly efficient reduced graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants.
    Sahu PS; Verma RP; Tewari C; Sahoo NG; Saha B
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):93054-93069. PubMed ID: 37498430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic nanoporous polymer-modified sponge for in situ oil/water separation.
    Zhang J; Chen R; Liu J; Liu Q; Yu J; Zhang H; Jing X; Liu P; Wang J
    Chemosphere; 2020 Jan; 239():124793. PubMed ID: 31726530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.
    Yu Y; Murthy BN; Shapter JG; Constantopoulos KT; Voelcker NH; Ellis AV
    J Hazard Mater; 2013 Sep; 260():330-8. PubMed ID: 23778259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of methylene blue from aqueous solution by graphene.
    Liu T; Li Y; Du Q; Sun J; Jiao Y; Yang G; Wang Z; Xia Y; Zhang W; Wang K; Zhu H; Wu D
    Colloids Surf B Biointerfaces; 2012 Feb; 90():197-203. PubMed ID: 22036471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra Fast Oil-Water Separation for Different Viscous Oil Using Flourine-Free, Reusable, Superhydrophobic Polyurethane Sponge.
    Ma J; Zhu W; Lartey PO; Qin W
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1540-1553. PubMed ID: 31492317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced graphene oxide composites and its real-life application potential for in-situ crude oil removal.
    Wang X; Peng G; Chen M; Zhao M; He Y; Jiang Y; Zhang X; Qin Y; Lin S
    Chemosphere; 2020 Jun; 249():126141. PubMed ID: 32062211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of polysiloxane-modified polyurethane sponge as low-cost organics/water separation and selective absorption material.
    Cui Z; He W; Liu J; Wei W; Jiang L; Huang J; Lv X
    Water Sci Technol; 2016 Oct; 74(8):1936-1945. PubMed ID: 27789894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route.
    Wang J; Wang H; Geng G
    Mar Pollut Bull; 2018 Feb; 127():108-116. PubMed ID: 29475642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup.
    Wu D; Fang L; Qin Y; Wu W; Mao C; Zhu H
    Mar Pollut Bull; 2014 Jul; 84(1-2):263-7. PubMed ID: 24856092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic, thermally stable, and superhydrophobic polyurethane sponge: A high efficient adsorbent for separation of the marine oil spill pollution.
    Habibi N; Pourjavadi A
    Chemosphere; 2022 Jan; 287(Pt 3):132254. PubMed ID: 34583296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous graphene materials for water remediation.
    Niu Z; Liu L; Zhang L; Chen X
    Small; 2014 Sep; 10(17):3434-41. PubMed ID: 24619776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.