These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 29199376)
1. Total Fatty Acid Content Determination of Whole Microalgal Biomass Using In Situ Transesterification. Van Wychen S; Laurens LML Methods Mol Biol; 2020; 1980():203-214. PubMed ID: 29199376 [TBL] [Abstract][Full Text] [Related]
2. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Laurens LM; Quinn M; Van Wychen S; Templeton DW; Wolfrum EJ Anal Bioanal Chem; 2012 Apr; 403(1):167-78. PubMed ID: 22349344 [TBL] [Abstract][Full Text] [Related]
3. Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach. Dong T; Yu L; Gao D; Yu X; Miao C; Zheng Y; Lian J; Li T; Chen S Appl Microbiol Biotechnol; 2015 Dec; 99(23):10237-47. PubMed ID: 26276545 [TBL] [Abstract][Full Text] [Related]
4. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition. Abedini Najafabadi H; Vossoughi M; Pazuki G Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240 [TBL] [Abstract][Full Text] [Related]
5. Analysis of fatty acid content and composition in microalgae. Breuer G; Evers WA; de Vree JH; Kleinegris DM; Martens DE; Wijffels RH; Lamers PP J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121679 [TBL] [Abstract][Full Text] [Related]
6. Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Griffiths MJ; van Hille RP; Harrison ST Lipids; 2010 Nov; 45(11):1053-60. PubMed ID: 20820931 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production. Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654 [TBL] [Abstract][Full Text] [Related]
8. In situ transesterification of highly wet microalgae using hydrochloric acid. Kim B; Im H; Lee JW Bioresour Technol; 2015 Jun; 185():421-5. PubMed ID: 25769690 [TBL] [Abstract][Full Text] [Related]
9. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy. Liu B; Liu J; Chen T; Yang B; Jiang Y; Wei D; Chen F Int J Mol Sci; 2015 Mar; 16(4):7045-56. PubMed ID: 25826532 [TBL] [Abstract][Full Text] [Related]
10. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification. Navarro López E; Robles Medina A; González Moreno PA; Esteban Cerdán L; Molina Grima E Bioresour Technol; 2016 Sep; 216():904-13. PubMed ID: 27323242 [TBL] [Abstract][Full Text] [Related]
11. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Karpagam R; Jawaharraj K; Gnanam R Sci Total Environ; 2021 Apr; 766():144236. PubMed ID: 33422843 [TBL] [Abstract][Full Text] [Related]
12. Suitability of Soxhlet extraction to quantify microalgal Fatty acids as determined by comparison with in situ transesterification. McNichol J; MacDougall KM; Melanson JE; McGinn PJ Lipids; 2012 Feb; 47(2):195-207. PubMed ID: 22057577 [TBL] [Abstract][Full Text] [Related]
14. Alkaline in situ transesterification of Aurantiochytrium sp. KRS 101 using potassium carbonate. Sung M; Han JI Bioresour Technol; 2016 Apr; 205():250-3. PubMed ID: 26848047 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography. Crompton MJ; Dunstan RH J Chromatogr B Analyt Technol Biomed Life Sci; 2018 May; 1084():80-88. PubMed ID: 29574290 [TBL] [Abstract][Full Text] [Related]
16. Microalgae to biodiesel: A novel green conversion method for high-quality lipids recovery and in-situ transesterification to fatty acid methyl esters. Oliva G; Buonerba A; Grassi A; Hasan SW; Korshin GV; Zorpas AA; Belgiorno V; Naddeo V; Zarra T J Environ Manage; 2024 Apr; 357():120830. PubMed ID: 38583383 [TBL] [Abstract][Full Text] [Related]
17. Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC-MS with one-step esterification of free fatty acids and transesterification of glycerolipids. Avula SGC; Belovich JM; Xu Y J Sep Sci; 2017 May; 40(10):2214-2227. PubMed ID: 28322518 [TBL] [Abstract][Full Text] [Related]
18. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Patil PD; Gude VG; Mannarswamy A; Cooke P; Munson-McGee S; Nirmalakhandan N; Lammers P; Deng S Bioresour Technol; 2011 Jan; 102(2):1399-405. PubMed ID: 20933395 [TBL] [Abstract][Full Text] [Related]
19. Conversion of Microbial Lipids to Biodiesel and Basic Lab Tests for Analysis of Fuel-Quality Parameters. Franz AK; Yothers C Methods Mol Biol; 2019; 1995():285-310. PubMed ID: 31148135 [TBL] [Abstract][Full Text] [Related]
20. Quantification and characterisation of fatty acid methyl esters in microalgae: Comparison of pretreatment and purification methods. Lage S; Gentili FG Bioresour Technol; 2018 Jun; 257():121-128. PubMed ID: 29494839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]