These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29199830)

  • 1. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles.
    Tang H; Zhang H; Ye H; Zheng Y
    J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles.
    Tang H; Ye H; Zhang H; Zheng Y
    Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative wrapping of nanoparticles by membrane tubes.
    Raatz M; Lipowsky R; Weikl TR
    Soft Matter; 2014 May; 10(20):3570-7. PubMed ID: 24658648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
    Li Y; Zhang M; Zhang Y; Niu X; Liu Z; Yue T; Zhang W
    J Mater Chem B; 2023 Jul; 11(27):6319-6334. PubMed ID: 37232123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy and Speed Landscapes of the Membrane Internalization Behavior of Soft Nanoparticles.
    Zhang Z; Ou L; Yang K; Yuan B
    J Phys Chem B; 2024 Mar; 128(11):2632-2639. PubMed ID: 38467492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics.
    Li Y; Yue T; Yang K; Zhang X
    Biomaterials; 2012 Jun; 33(19):4965-73. PubMed ID: 22483010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.
    Kettler K; Veltman K; van de Meent D; van Wezel A; Hendriks AJ
    Environ Toxicol Chem; 2014 Mar; 33(3):481-92. PubMed ID: 24273100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model.
    Li Y; Zhang M; Niu X; Yue T
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112467. PubMed ID: 35366575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles: cellular uptake and cytotoxicity.
    Adjei IM; Sharma B; Labhasetwar V
    Adv Exp Med Biol; 2014; 811():73-91. PubMed ID: 24683028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling.
    Liu N; Becton M; Zhang L; Wang X
    J Phys Chem B; 2020 Dec; 124(49):11145-11156. PubMed ID: 33226245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nanoparticle geometry in endocytosis: laying down to stand up.
    Huang C; Zhang Y; Yuan H; Gao H; Zhang S
    Nano Lett; 2013 Sep; 13(9):4546-50. PubMed ID: 23972158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides.
    Yan Z; Wu Z; Li S; Zhang X; Yi X; Yue T
    Nanoscale; 2019 Nov; 11(42):19751-19762. PubMed ID: 31384870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cell size on cellular uptake of gold nanoparticles.
    Wang X; Hu X; Li J; Russe AC; Kawazoe N; Yang Y; Chen G
    Biomater Sci; 2016 Jun; 4(6):970-8. PubMed ID: 27095054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between Nanoparticle Wrapping and Clustering of Inner Anchored Membrane Proteins.
    Yue T; Li S; Xu Y; Zhang X; Huang F
    J Phys Chem B; 2016 Oct; 120(42):11000-11009. PubMed ID: 27723331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles.
    Chen L; Li X; Zhang Y; Chen T; Xiao S; Liang H
    Nanoscale; 2018 Jul; 10(25):11969-11979. PubMed ID: 29904774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.