These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2920027)

  • 1. A single-parameter family of adjustments for fitting enzyme kinetic models to progress-curve data.
    Duggleby RG; Nash JC
    Biochem J; 1989 Jan; 257(1):57-64. PubMed ID: 2920027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of progress curves for enzyme-catalysed reactions. Automatic construction of computer programs for fitting integrated rate equations.
    Duggleby RG; Wood C
    Biochem J; 1989 Mar; 258(2):397-402. PubMed ID: 2705990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equations for progress curves of some kinetic models of enzyme-single substrate-single slow binding modifier system.
    Stojan J
    J Enzyme Inhib; 1998 Jun; 13(3):161-76. PubMed ID: 9629535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitting integrated enzyme rate equations to progress curves with the use of a weighting matrix.
    Franco R; Aran JM; Canela EI
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):509-11. PubMed ID: 2006914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress-curve analysis in enzyme kinetics. Numerical solution of integrated rate equations.
    Duggleby RG
    Biochem J; 1986 Apr; 235(2):613-5. PubMed ID: 3741409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach to the measurement of sigmoid curves with enzyme kinetic and ligand binding data.
    Bardsley WG; Wright AJ
    J Mol Biol; 1983 Mar; 165(1):163-82. PubMed ID: 6842604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An easy method for deriving steady-state rate equations.
    Waley SG
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):357-9. PubMed ID: 1530568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of progress curves by simulations generated by numerical integration.
    Zimmerle CT; Frieden C
    Biochem J; 1989 Mar; 258(2):381-7. PubMed ID: 2705989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of Net Rate Constants from Enzyme Progress Curves without Curve Fitting.
    Ruszczycky MW; Liu HW
    Biochemistry; 2019 Dec; 58(49):4950-4956. PubMed ID: 31710808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated 2:2 and 3:3 rate equations of enzyme kinetics.
    Waley SG
    Biochim Biophys Acta; 1988 Jul; 955(2):272-3. PubMed ID: 3395630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of progress curves in enzyme kinetics: bias and convergent set in the differential and in the integral method.
    Markus M; Plesser T; Kohlmeier M
    J Biochem Biophys Methods; 1981 Feb; 4(2):81-90. PubMed ID: 7229264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool.
    Bäuerle F; Zotter A; Schreiber G
    Protein Eng Des Sel; 2017 Mar; 30(3):149-156. PubMed ID: 27744288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of enzyme kinetic parameters by continuous addition of substrate to a single reaction mixture and analysis by a tangent-slope procedure. I. Analysis of the method using computed progress curves.
    LeBlond DJ; Ashendel CL; Wood WA
    Anal Biochem; 1980 May; 104(2):355-69. PubMed ID: 7446962
    [No Abstract]   [Full Text] [Related]  

  • 14. The analysis of progress curves for enzyme-catalysed reactions by non-linear regression.
    Duggleby RG; Morrison JF
    Biochim Biophys Acta; 1977 Apr; 481(2):297-312. PubMed ID: 870047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation.
    Atkins GL; Nimmo IA
    Biochem J; 1973 Dec; 135(4):779-84. PubMed ID: 4778274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of two methods for fitting the integrated Michaelis-Menten equation.
    Nimmo IA; Atkins GL
    Biochem J; 1974 Sep; 141(3):913-4. PubMed ID: 4463971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of progress curve analysis to in situ enzyme kinetics using 1H NMR spectroscopy.
    Vandenberg JI; Kuchel PW; King GF
    Anal Biochem; 1986 May; 155(1):38-44. PubMed ID: 3013046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting Kinetic Isotope Effects From a Global Analysis of Reaction Progress Curves.
    Hay S
    Methods Enzymol; 2017; 596():85-111. PubMed ID: 28911785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of slow-binding and slow, tight-binding inhibition: the effects of substrate depletion.
    Waley SG
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):195-200. PubMed ID: 8363573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DerivFit: a program for rate equation parameter fitting using derivatives.
    Michalski R; Rode W; Leś A
    Comput Biomed Res; 1998 Apr; 31(2):71-89. PubMed ID: 9570899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.