BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29200283)

  • 1. In Vitro Biosynthetic Studies of Bottromycin Expand the Enzymatic Capabilities of the YcaO Superfamily.
    Schwalen CJ; Hudson GA; Kosol S; Mahanta N; Challis GL; Mitchell DA
    J Am Chem Soc; 2017 Dec; 139(50):18154-18157. PubMed ID: 29200283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroamidine Formation in Bottromycins Is Catalyzed by a Divergent YcaO Enzyme.
    Franz L; Adam S; Santos-Aberturas J; Truman AW; Koehnke J
    J Am Chem Soc; 2017 Dec; 139(50):18158-18161. PubMed ID: 29206037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting Bottromycin Biosynthesis Using Comparative Untargeted Metabolomics.
    Crone WJ; Vior NM; Santos-Aberturas J; Schmitz LG; Leeper FJ; Truman AW
    Angew Chem Int Ed Engl; 2016 Aug; 55(33):9639-43. PubMed ID: 27374993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations.
    Dunbar KL; Melby JO; Mitchell DA
    Nat Chem Biol; 2012 Apr; 8(6):569-75. PubMed ID: 22522320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Stereoselective P450 Enzyme BotCYP Enables the
    Adam S; Franz L; Milhim M; Bernhardt R; Kalinina OV; Koehnke J
    J Am Chem Soc; 2020 Dec; 142(49):20560-20565. PubMed ID: 33249843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiazoline-Specific Amidohydrolase PurAH Is the Gatekeeper of Bottromycin Biosynthesis.
    Sikandar A; Franz L; Melse O; Antes I; Koehnke J
    J Am Chem Soc; 2019 Jun; 141(25):9748-9752. PubMed ID: 31192589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Substrate Recognition of the Bottromycin Maturation Enzyme BotP.
    Mann G; Huo L; Adam S; Nardone B; Vendome J; Westwood NJ; Müller R; Koehnke J
    Chembiochem; 2016 Dec; 17(23):2286-2292. PubMed ID: 27653442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Basis for Ribosomal Peptide Backbone Modifications.
    Dong SH; Liu A; Mahanta N; Mitchell DA; Nair SK
    ACS Cent Sci; 2019 May; 5(5):842-851. PubMed ID: 31139720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function.
    Burkhart BJ; Schwalen CJ; Mann G; Naismith JH; Mitchell DA
    Chem Rev; 2017 Apr; 117(8):5389-5456. PubMed ID: 28256131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products.
    Dunbar KL; Tietz JI; Cox CL; Burkhart BJ; Mitchell DA
    J Am Chem Soc; 2015 Jun; 137(24):7672-7. PubMed ID: 26024319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bottromycins - biosynthesis, synthesis and activity.
    Franz L; Kazmaier U; Truman AW; Koehnke J
    Nat Prod Rep; 2021 Sep; 38(9):1659-1683. PubMed ID: 33621290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic Expansion and Discovery of Thiopeptide Antibiotics.
    Schwalen CJ; Hudson GA; Kille B; Mitchell DA
    J Am Chem Soc; 2018 Aug; 140(30):9494-9501. PubMed ID: 29983054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool.
    Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW
    Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis.
    Chekan JR; Ongpipattanakul C; Nair SK
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24049-24055. PubMed ID: 31719203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Self-Sacrificing N-Methyltransferase Is the Precursor of the Fungal Natural Product Omphalotin.
    Ramm S; Krawczyk B; Mühlenweg A; Poch A; Mösker E; Süssmuth RD
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9994-9997. PubMed ID: 28715095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink.
    Clark KA; Seyedsayamdost MR
    J Am Chem Soc; 2022 Oct; 144(39):17876-17888. PubMed ID: 36128669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition sequences and substrate evolution in cyanobactin biosynthesis.
    Sardar D; Pierce E; McIntosh JA; Schmidt EW
    ACS Synth Biol; 2015 Feb; 4(2):167-76. PubMed ID: 24625112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis.
    Zheng Y; Nair SK
    Nat Chem Biol; 2023 Jan; 19(1):111-119. PubMed ID: 36280794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products.
    Fernandez-Cantos MV; Garcia-Morena D; Yi Y; Liang L; Gómez-Vázquez E; Kuipers OP
    Front Microbiol; 2023; 14():1219272. PubMed ID: 37469430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.