These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29200395)

  • 21. DNA Data Collection and Analysis in the Forensic Arena.
    Grabell S; Shomron N
    Methods Mol Biol; 2021; 2243():355-368. PubMed ID: 33606268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation/extraction, detection, and interpretation of DNA mixtures in forensic science (review).
    Tao R; Wang S; Zhang J; Zhang J; Yang Z; Sheng X; Hou Y; Zhang S; Li C
    Int J Legal Med; 2018 Sep; 132(5):1247-1261. PubMed ID: 29802461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of a criminal suspect using environmental plant DNA metabarcoding technology.
    Liu Y; Xu C; Dong W; Yang X; Zhou S
    Forensic Sci Int; 2021 Jul; 324():110828. PubMed ID: 34000616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Mitochondrial Control Region Using Sanger Sequencing.
    Ballard D
    Methods Mol Biol; 2016; 1420():143-55. PubMed ID: 27259738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the probability of allelic drop-out of STR alleles in forensic genetics.
    Tvedebrink T; Eriksen PS; Mogensen HS; Morling N
    Forensic Sci Int Genet; 2009 Sep; 3(4):222-6. PubMed ID: 19647706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An integratable microfluidic cartridge for forensic swab samples lysis.
    Yang J; Brooks C; Estes MD; Hurth CM; Zenhausern F
    Forensic Sci Int Genet; 2014 Jan; 8(1):147-58. PubMed ID: 24315603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling forward stutter: toward increased objectivity in forensic DNA interpretation.
    Bright JA; Buckleton JS; Taylor D; Fernando MA; Curran JM
    Electrophoresis; 2014 Nov; 35(21-22):3152-7. PubMed ID: 25147083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.
    Kayser M
    Forensic Sci Int Genet; 2015 Sep; 18():33-48. PubMed ID: 25716572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs.
    Kampmann ML; Buchard A; Børsting C; Morling N
    Biotechniques; 2016; 61(3):149-51. PubMed ID: 27625209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations.
    Kayser M; Schneider PM
    Forensic Sci Int Genet; 2009 Jun; 3(3):154-61. PubMed ID: 19414162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Massively parallel sequencing of customised forensically informative SNP panels on the MiSeq.
    Mehta B; Daniel R; Phillips C; Doyle S; Elvidge G; McNevin D
    Electrophoresis; 2016 Oct; 37(21):2832-2840. PubMed ID: 27605155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer.
    Liu P; Yeung SH; Crenshaw KA; Crouse CA; Scherer JR; Mathies RA
    Forensic Sci Int Genet; 2008 Sep; 2(4):301-9. PubMed ID: 19083840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a rapid 21-plex autosomal STR typing system for forensic applications.
    Yang M; Yin C; Lv Y; Yang Y; Chen J; Yu Z; Liu X; Xu M; Chen F; Wu H; Yan J
    Electrophoresis; 2016 Oct; 37(21):2789-2799. PubMed ID: 27066765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell forensic short tandem repeat typing within microfluidic droplets.
    Geng T; Novak R; Mathies RA
    Anal Chem; 2014 Jan; 86(1):703-12. PubMed ID: 24266330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial forensics: next-generation sequencing as catalyst: The use of new sequencing technologies to analyze whole microbial communities could become a powerful tool for forensic and criminal investigations.
    Kuiper I
    EMBO Rep; 2016 Aug; 17(8):1085-7. PubMed ID: 27325822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forensic DNA and bioinformatics.
    Bianchi L; Liò P
    Brief Bioinform; 2007 Mar; 8(2):117-28. PubMed ID: 17384432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. STR allele sequence variation: Current knowledge and future issues.
    Gettings KB; Aponte RA; Vallone PM; Butler JM
    Forensic Sci Int Genet; 2015 Sep; 18():118-30. PubMed ID: 26197946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA in the Criminal Justice System: The DNA Success Story in Perspective.
    Mapes AA; Kloosterman AD; de Poot CJ
    J Forensic Sci; 2015 Jul; 60(4):851-6. PubMed ID: 25845542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Getting the conclusive lead with investigative genetic genealogy - A successful case study of a 16 year old double murder in Sweden.
    Tillmar A; Fagerholm SA; Staaf J; Sjölund P; Ansell R
    Forensic Sci Int Genet; 2021 Jul; 53():102525. PubMed ID: 33991867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interpretation guidelines for multilocus STR forensic profiles from low template DNA samples.
    Budimlija ZM; Caragine TA
    Methods Mol Biol; 2012; 830():199-211. PubMed ID: 22139662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.