These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29200499)

  • 1. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.
    de la Cruz R; Guerrero P; Calvo J; Alarcón T
    J Comput Phys; 2017 Dec; 350():974-991. PubMed ID: 29200499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes.
    Yates CA; George A; Jordana A; Smith CA; Duncan AB; Zygalakis KC
    J R Soc Interface; 2020 Oct; 17(171):20200563. PubMed ID: 33081647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems.
    Katsoulakis MA; Plechác P
    J Chem Phys; 2013 Aug; 139(7):074115. PubMed ID: 23968080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid deterministic-stochastic algorithm for modeling cell signaling dynamics in spatially inhomogeneous environments and under the influence of external fields.
    Wylie DC; Hori Y; Dinner AR; Chakraborty AK
    J Phys Chem B; 2006 Jun; 110(25):12749-65. PubMed ID: 16800611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-graining molecular dynamics: stochastic models with non-Gaussian force distributions.
    Erban R
    J Math Biol; 2020 Jan; 80(1-2):457-479. PubMed ID: 31541299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach.
    Kim C; Nonaka A; Bell JB; Garcia AL; Donev A
    J Chem Phys; 2017 Mar; 146(12):124110. PubMed ID: 28388111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence.
    Davtyan A; Dama JF; Voth GA; Andersen HC
    J Chem Phys; 2015 Apr; 142(15):154104. PubMed ID: 25903863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven discovery of stochastic dynamical equations of collective motion.
    Nabeel A; Jadhav V; M DR; Sire C; Theraulaz G; Escobedo R; Iyer SK; Guttal V
    Phys Biol; 2023 Jul; 20(5):. PubMed ID: 37369222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.
    Bressloff PC
    J Math Neurosci; 2015; 5():4. PubMed ID: 25852979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic multi-scale models of competition within heterogeneous cellular populations: Simulation methods and mean-field analysis.
    Cruz R; Guerrero P; Spill F; Alarcón T
    J Theor Biol; 2016 Oct; 407():161-183. PubMed ID: 27457092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adiabatic coarse-graining and simulations of stochastic biochemical networks.
    Sinitsyn NA; Hengartner N; Nemenman I
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10546-51. PubMed ID: 19525397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale stochastic organization-oriented coarse-graining exemplified on the human mitotic checkpoint.
    Henze R; Mu C; Puljiz M; Kamaleson N; Huwald J; Haslegrave J; di Fenizio PS; Parker D; Good C; Rowe JE; Ibrahim B; Dittrich P
    Sci Rep; 2019 Mar; 9(1):3902. PubMed ID: 30846816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial mean-field model for neurotransmission dynamics.
    Montefusco A; Helfmann L; Okunola T; Winkelmann S; Schütte C
    Math Biosci; 2024 Mar; 369():109143. PubMed ID: 38220067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.
    Yates CA; Flegg MB
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcanonical coarse-graining of the kinetic Ising model.
    Sigg D; Voelz VA; Carnevale V
    J Chem Phys; 2020 Feb; 152(8):084104. PubMed ID: 32113343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models.
    Simpson MJ; Baker RE; Buenzli PR; Nicholson R; Maclaren OJ
    J Theor Biol; 2022 Sep; 549():111201. PubMed ID: 35752285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained stochastic models for tropical convection and climate.
    Khouider B; Majda AJ; Katsoulakis MA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):11941-6. PubMed ID: 14519858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse Graining, Nonmaximal Entropy, and Power Laws.
    Pérez-Cárdenas FC; Resca L; Pegg IL
    Entropy (Basel); 2018 Sep; 20(10):. PubMed ID: 33265826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent-state path integral versus coarse-grained effective stochastic equation of motion: From reaction diffusion to stochastic sandpiles.
    Wiese KJ
    Phys Rev E; 2016 Apr; 93():042117. PubMed ID: 27176264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.