These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 29201141)
21. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Radoš D; Carvalho AL; Wieschalka S; Neves AR; Blombach B; Eikmanns BJ; Santos H Microb Cell Fact; 2015 Oct; 14():171. PubMed ID: 26511723 [TBL] [Abstract][Full Text] [Related]
22. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate. Kim EM; Um Y; Bott M; Woo HM FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018 [TBL] [Abstract][Full Text] [Related]
23. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach. Luque L; Oudenhoven S; Westerhof R; van Rossum G; Berruti F; Kersten S; Rehmann L Biotechnol Biofuels; 2016; 9():242. PubMed ID: 28702087 [TBL] [Abstract][Full Text] [Related]
24. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum. Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556 [TBL] [Abstract][Full Text] [Related]
25. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Niimi S; Suzuki N; Inui M; Yukawa H Appl Microbiol Biotechnol; 2011 Jun; 90(5):1721-9. PubMed ID: 21424269 [TBL] [Abstract][Full Text] [Related]
26. Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with Roume H; Arends JB; Ameril CP; Patil SA; Rabaey K Front Bioeng Biotechnol; 2016; 4():73. PubMed ID: 27725929 [TBL] [Abstract][Full Text] [Related]
27. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Shen J; Chen J; Jensen PR; Solem C Microb Cell Fact; 2019 Mar; 18(1):51. PubMed ID: 30857537 [TBL] [Abstract][Full Text] [Related]
28. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Litsanov B; Brocker M; Bott M Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371 [TBL] [Abstract][Full Text] [Related]
29. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Schneider J; Eberhardt D; Wendisch VF Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950 [TBL] [Abstract][Full Text] [Related]
30. Fermentative reforming of crude glycerol to 1,3-propanediol using Clostridium butyricum strain L4. Gupta P; Kumar M; Gupta RP; Puri SK; Ramakumar SSV Chemosphere; 2022 Apr; 292():133426. PubMed ID: 34971623 [TBL] [Abstract][Full Text] [Related]
31. A new genome-scale metabolic model of Zhang Y; Cai J; Shang X; Wang B; Liu S; Chai X; Tan T; Zhang Y; Wen T Biotechnol Biofuels; 2017; 10():169. PubMed ID: 28680478 [TBL] [Abstract][Full Text] [Related]
32. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Baritugo KA; Kim HT; David Y; Choi JI; Hong SH; Jeong KJ; Choi JH; Joo JC; Park SJ Appl Microbiol Biotechnol; 2018 May; 102(9):3915-3937. PubMed ID: 29557518 [TBL] [Abstract][Full Text] [Related]
33. Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Tang X; Tan Y; Zhu H; Zhao K; Shen W Appl Environ Microbiol; 2009 Mar; 75(6):1628-34. PubMed ID: 19139229 [TBL] [Abstract][Full Text] [Related]
34. Two-stage microbial conversion of crude glycerol to 1,3-propanediol and polyhydroxyalkanoates after pretreatment. Pan C; Tan GA; Ge L; Chen CL; Wang JY J Environ Manage; 2019 Feb; 232():615-624. PubMed ID: 30522068 [TBL] [Abstract][Full Text] [Related]
35. Engineering Escherichia coli for Direct Production of 1,2-Propanediol and 1,3-Propanediol from Starch. Sato R; Tanaka T; Ohara H; Aso Y Curr Microbiol; 2020 Nov; 77(11):3704-3710. PubMed ID: 32909101 [TBL] [Abstract][Full Text] [Related]
36. Sequential fed-batch fermentation of 1,3-propanediol from glycerol by Clostridium butyricum DL07. Wang XL; Zhou JJ; Shen JT; Zheng YF; Sun YQ; Xiu ZL Appl Microbiol Biotechnol; 2020 Nov; 104(21):9179-9191. PubMed ID: 32997204 [TBL] [Abstract][Full Text] [Related]
37. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154 [TBL] [Abstract][Full Text] [Related]
38. Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study. Md Rahim SAN; Lee CS; Aroua MK; Wan Daud WMA; Abnisa F; Cognet P; Pérès Y Front Chem; 2022; 10():845614. PubMed ID: 35281562 [TBL] [Abstract][Full Text] [Related]
39. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing Han T; Kim GB; Lee SY Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604 [TBL] [Abstract][Full Text] [Related]
40. Efficient Production of 1,3-Propanediol from Diverse Carbohydrates via a Non-natural Pathway Using 3-Hydroxypropionic Acid as an Intermediate. Li Z; Wu Z; Cen X; Liu Y; Zhang Y; Liu D; Chen Z ACS Synth Biol; 2021 Mar; 10(3):478-486. PubMed ID: 33625207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]