These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29201605)

  • 1. Culture-Free Detection of Crop Pathogens at the Single-Cell Level by Micro-Raman Spectroscopy.
    Gan Q; Wang X; Wang Y; Xie Z; Tian Y; Lu Y
    Adv Sci (Weinh); 2017 Nov; 4(11):1700127. PubMed ID: 29201605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.
    Kajiwara H
    J Microbiol Methods; 2016 Jan; 120():1-5. PubMed ID: 26319185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of
    Zhang L; Gao W; Yin Y; Wang Z
    Exp Ther Med; 2019 Mar; 17(3):1870-1876. PubMed ID: 30783462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Postharvest Onion Curing Parameters on the Development of Sour Skin and Slippery Skin in Storage.
    Schroeder BK; Humann JL; du Toit LJ
    Plant Dis; 2012 Oct; 96(10):1548-1555. PubMed ID: 30727318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxoflavin Produced by
    Li X; Li Y; Wang R; Wang Q; Lu L
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of pathogens and detection of antibiotic susceptibility at single-cell resolution by Raman spectroscopy combined with machine learning.
    Lu W; Li H; Qiu H; Wang L; Feng J; Fu YV
    Front Microbiol; 2022; 13():1076965. PubMed ID: 36687641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving complex phenotypes with Raman spectroscopy and chemometrics.
    Senger RS; Scherr D
    Curr Opin Biotechnol; 2020 Dec; 66():277-282. PubMed ID: 33142112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culture-Free Detection of Bacterial Pathogens on Plasmonic Nanopillar Arrays Using Rapid Raman Mapping.
    Ko J; Park SG; Lee S; Wang X; Mun C; Kim S; Kim DH; Choo J
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6831-6840. PubMed ID: 29405055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time On-Site Diagnosis of Quarantine Pathogens in Plant Tissues by Nanopore-Based Sequencing.
    Marcolungo L; Passera A; Maestri S; Segala E; Alfano M; Gaffuri F; Marturano G; Casati P; Bianco PA; Delledonne M
    Pathogens; 2022 Feb; 11(2):. PubMed ID: 35215142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Robust and Rapid Raw Material Identification and Release by Handheld Raman Spectroscopy.
    Matthews TE; Coffman C; Kolwyck D; Hill D; Dickens JE
    PDA J Pharm Sci Technol; 2019; 73(4):356-372. PubMed ID: 30770483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micro-Raman and chemometric study of urinary tract infection-causing bacterial pathogens in mixed cultures.
    M Y; Chawla K; Bankapur A; Acharya M; D'Souza JS; Chidangil S
    Anal Bioanal Chem; 2019 May; 411(14):3165-3177. PubMed ID: 30989268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DNAzymes-in-droplets assay for
    Li X; Chang Y; Wu Y; Liu M
    Chem Sci; 2024 Feb; 15(8):2996-3002. PubMed ID: 38404397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultureless enumeration of live bacteria in urinary tract infection by single-cell Raman spectroscopy.
    Wang J; Kong K; Guo C; Yin G; Meng S; Lan L; Luo L; Song Y
    Front Microbiol; 2023; 14():1144607. PubMed ID: 37032883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and Identification of Fungal Infections in Intact Wheat and Sorghum Grain Using a Hand-Held Raman Spectrometer.
    Egging V; Nguyen J; Kurouski D
    Anal Chem; 2018 Jul; 90(14):8616-8621. PubMed ID: 29898358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of early osteogenic commitment in primary cells using Raman spectroscopy.
    Smith SJ; Emery R; Pitsillides A; Clarkin CE; Mahajan S
    Analyst; 2017 May; 142(11):1962-1973. PubMed ID: 28503694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation.
    Kalasinsky KS; Hadfield T; Shea AA; Kalasinsky VF; Nelson MP; Neiss J; Drauch AJ; Vanni GS; Treado PJ
    Anal Chem; 2007 Apr; 79(7):2658-73. PubMed ID: 17338507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus.
    Farhane Z; Bonnier F; Casey A; Maguire A; O'Neill L; Byrne HJ
    Analyst; 2015 Sep; 140(17):5908-19. PubMed ID: 26207998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Separation, characters and biological functions of Erwinia chrysanthemi pv. zeae toxin].
    Liu Q; Luo J; He X; Wang Z
    Wei Sheng Wu Xue Bao; 2008 Nov; 48(11):1499-506. PubMed ID: 19149166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octupolar Metastructures for a Highly Sensitive, Rapid, and Reproducible Phage-Based Detection of Bacterial Pathogens by Surface-Enhanced Raman Scattering.
    Rippa M; Castagna R; Pannico M; Musto P; Borriello G; Paradiso R; Galiero G; Bolletti Censi S; Zhou J; Zyss J; Petti L
    ACS Sens; 2017 Jul; 2(7):947-954. PubMed ID: 28750539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method for Capture and Detection of Crop Airborne Disease Spores Based on Microfluidic Chips and Micro Raman Spectroscopy.
    Zhang X; Bian F; Wang Y; Hu L; Yang N; Mao H
    Foods; 2022 Nov; 11(21):. PubMed ID: 36360075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.