These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29201938)
1. Classification of images based on small local features: a case applied to microaneurysms in fundus retina images. Ordóñez PF; Cepeda CM; Garrido J; Chakravarty S J Med Imaging (Bellingham); 2017 Oct; 4(4):041309. PubMed ID: 29201938 [TBL] [Abstract][Full Text] [Related]
2. Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives. Kundu S; Karale V; Ghorai G; Sarkar G; Ghosh S; Dhara AK J Digit Imaging; 2022 Oct; 35(5):1111-1119. PubMed ID: 35474556 [TBL] [Abstract][Full Text] [Related]
3. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
4. Deep image mining for diabetic retinopathy screening. Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066 [TBL] [Abstract][Full Text] [Related]
5. Robust optimization of convolutional neural networks with a uniform experiment design method: a case of phonocardiogram testing in patients with heart diseases. Ho WH; Huang TH; Yang PY; Chou JH; Qu JY; Chang PC; Chou FI; Tsai JT BMC Bioinformatics; 2021 Nov; 22(Suppl 5):92. PubMed ID: 34749632 [TBL] [Abstract][Full Text] [Related]
6. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Chetoui M; Akhloufi MA J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519 [No Abstract] [Full Text] [Related]
7. Comparative Analysis of Vision Transformers and Conventional Convolutional Neural Networks in Detecting Referable Diabetic Retinopathy. Goh JHL; Ang E; Srinivasan S; Lei X; Loh J; Quek TC; Xue C; Xu X; Liu Y; Cheng CY; Rajapakse JC; Tham YC Ophthalmol Sci; 2024; 4(6):100552. PubMed ID: 39165694 [TBL] [Abstract][Full Text] [Related]
8. Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Zago GT; Andreão RV; Dorizzi B; Teatini Salles EO Comput Biol Med; 2020 Jan; 116():103537. PubMed ID: 31747632 [TBL] [Abstract][Full Text] [Related]
9. Microaneurysm detection in fundus images using a two-step convolutional neural network. Eftekhari N; Pourreza HR; Masoudi M; Ghiasi-Shirazi K; Saeedi E Biomed Eng Online; 2019 May; 18(1):67. PubMed ID: 31142335 [TBL] [Abstract][Full Text] [Related]
10. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms. Li H; Giger ML; Huynh BQ; Antropova NO J Med Imaging (Bellingham); 2017 Oct; 4(4):041304. PubMed ID: 28924576 [TBL] [Abstract][Full Text] [Related]
11. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Liu YP; Li Z; Xu C; Li J; Liang R Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108 [TBL] [Abstract][Full Text] [Related]
12. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Huynh BQ; Li H; Giger ML J Med Imaging (Bellingham); 2016 Jul; 3(3):034501. PubMed ID: 27610399 [TBL] [Abstract][Full Text] [Related]
13. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images. Hu W; Zhang Y; Li L Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516 [TBL] [Abstract][Full Text] [Related]
14. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning. Alyoubi WL; Abulkhair MF; Shalash WM Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541 [TBL] [Abstract][Full Text] [Related]
15. An ensemble deep learning based approach for red lesion detection in fundus images. Orlando JI; Prokofyeva E; Del Fresno M; Blaschko MB Comput Methods Programs Biomed; 2018 Jan; 153():115-127. PubMed ID: 29157445 [TBL] [Abstract][Full Text] [Related]
16. Vision transformer with masked autoencoders for referable diabetic retinopathy classification based on large-size retina image. Yang Y; Cai Z; Qiu S; Xu P PLoS One; 2024; 19(3):e0299265. PubMed ID: 38446810 [TBL] [Abstract][Full Text] [Related]
17. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
18. Ophthalmologist-Level Classification of Fundus Disease With Deep Neural Networks. Jiang P; Dou Q; Shi L Transl Vis Sci Technol; 2020 Jul; 9(2):39. PubMed ID: 32855843 [TBL] [Abstract][Full Text] [Related]
19. Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy. Lazo JF; Marzullo A; Moccia S; Catellani M; Rosa B; de Mathelin M; De Momi E Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):915-922. PubMed ID: 33909264 [TBL] [Abstract][Full Text] [Related]
20. Effective methods of diabetic retinopathy detection based on deep convolutional neural networks. Gu Y; Wang X; Pan J; Yong Z; Guo S; Pan T; Jiao Y; Zhou Z Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2177-2187. PubMed ID: 34606059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]