These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29202176)

  • 1. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates).
    Ludewig-Klingner AK; Michael V; Jarek M; Brinkmann H; Petersen J
    Genome Biol Evol; 2018 Jan; 10(1):1-13. PubMed ID: 29202176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Localization of Peroxisomal Biogenesis Proteins Indicates the Presence of Peroxisomes in the Cryptophyte Guillardia theta and Other "Chromalveolates".
    Mix AK; Cenci U; Heimerl T; Marter P; Wirkner ML; Moog D
    Genome Biol Evol; 2018 Oct; 10(10):2834-2852. PubMed ID: 30247558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterol Composition and Biosynthetic Genes of Vitrella brassicaformis, a Recently Discovered Chromerid: Comparison to Chromera velia and Phylogenetic Relationship with Apicomplexan Parasites.
    Khadka M; Salem M; Leblond JD
    J Eukaryot Microbiol; 2015; 62(6):786-98. PubMed ID: 25996517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and Proteomic Evidence for the Presence of a Peroxisome in the Apicomplexan Parasite Toxoplasma gondii and Other Coccidia.
    Moog D; Przyborski JM; Maier UG
    Genome Biol Evol; 2017 Nov; 9(11):3108-3121. PubMed ID: 29126146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of extracellular proteins during the transition from the 'proto-apicomplexan' alveolates to the apicomplexan obligate parasites.
    Templeton TJ; Pain A
    Parasitology; 2016 Jan; 143(1):1-17. PubMed ID: 26585326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromera velia: The Missing Link in the Evolution of Parasitism.
    Weatherby K; Carter D
    Adv Appl Microbiol; 2013; 85():119-44. PubMed ID: 23942150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis.
    Tomčala A; Kyselová V; Schneedorferová I; Opekarová I; Moos M; Urajová P; Kručinská J; Oborník M
    J Sep Sci; 2017 Sep; 40(17):3402-3413. PubMed ID: 28675643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Budding of the Alveolate Alga Vitrella brassicaformis Resembles Sexual and Asexual Processes in Apicomplexan Parasites.
    Füssy Z; Masařová P; Kručinská J; Esson HJ; Oborník M
    Protist; 2017 Feb; 168(1):80-91. PubMed ID: 28061382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolutionary origin of peroxisomes: an ER-peroxisome connection.
    Schlüter A; Fourcade S; Ripp R; Mandel JL; Poch O; Pujol A
    Mol Biol Evol; 2006 Apr; 23(4):838-45. PubMed ID: 16452116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans.
    Danne JC; Gornik SG; Macrae JI; McConville MJ; Waller RF
    Mol Biol Evol; 2013 Jan; 30(1):123-39. PubMed ID: 22923466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic analysis of Perkinsus based on actin gene sequences.
    Reece KS; Siddall ME; Burreson EM; Graves JE
    J Parasitol; 1997 Jun; 83(3):417-23. PubMed ID: 9194820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural, Cytochemical, and Comparative Genomic Evidence of Peroxisomes in Three Genera of Pathogenic Free-Living Amoebae, Including the First Morphological Data for the Presence of This Organelle in Heteroloboseans.
    González-Robles A; González-Lázaro M; Lagunes-Guillén AE; Omaña-Molina M; Lares-Jiménez LF; Lares-Villa F; Martínez-Palomo A
    Genome Biol Evol; 2020 Oct; 12(10):1734-1750. PubMed ID: 32602891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Organellar Genomes of Chromera and Vitrella, the Phototrophic Relatives of Apicomplexan Parasites.
    Oborník M; Lukeš J
    Annu Rev Microbiol; 2015; 69():129-44. PubMed ID: 26092225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites.
    Flegontov P; Michálek J; Janouškovec J; Lai DH; Jirků M; Hajdušková E; Tomčala A; Otto TD; Keeling PJ; Pain A; Oborník M; Lukeš J
    Mol Biol Evol; 2015 May; 32(5):1115-31. PubMed ID: 25660376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis.
    Füssy Z; Faitová T; Oborník M
    Genome Biol Evol; 2019 Jul; 11(7):1765-1779. PubMed ID: 31192348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Analyses of a Putative, Membrane-Bound, Peroxisomal Protein Import Mechanism from the Apicomplexan Protozoan
    Mbekeani AJ; Stanley WA; Kalel VC; Dahan N; Zalckvar E; Sheiner L; Schliebs W; Erdmann R; Pohl E; Denny PW
    Genes (Basel); 2018 Aug; 9(9):. PubMed ID: 30158461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives.
    Janouškovec J; Tikhonenkov DV; Burki F; Howe AT; Kolísko M; Mylnikov AP; Keeling PJ
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10200-7. PubMed ID: 25717057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef.
    Oborník M; Modrý D; Lukeš M; Cernotíková-Stříbrná E; Cihlář J; Tesařová M; Kotabová E; Vancová M; Prášil O; Lukeš J
    Protist; 2012 Mar; 163(2):306-23. PubMed ID: 22055836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast peroxisomes: How are they formed and how do they grow?
    Akşit A; van der Klei IJ
    Int J Biochem Cell Biol; 2018 Dec; 105():24-34. PubMed ID: 30268746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites.
    Woo YH; Ansari H; Otto TD; Klinger CM; Kolisko M; Michálek J; Saxena A; Shanmugam D; Tayyrov A; Veluchamy A; Ali S; Bernal A; del Campo J; Cihlář J; Flegontov P; Gornik SG; Hajdušková E; Horák A; Janouškovec J; Katris NJ; Mast FD; Miranda-Saavedra D; Mourier T; Naeem R; Nair M; Panigrahi AK; Rawlings ND; Padron-Regalado E; Ramaprasad A; Samad N; Tomčala A; Wilkes J; Neafsey DE; Doerig C; Bowler C; Keeling PJ; Roos DS; Dacks JB; Templeton TJ; Waller RF; Lukeš J; Oborník M; Pain A
    Elife; 2015 Jul; 4():e06974. PubMed ID: 26175406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.