These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 29202321)

  • 1. Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach.
    Liu S; Zeng J; Gong H; Yang H; Zhai J; Cao Y; Liu J; Luo Y; Li Y; Maguire L; Ding X
    Comput Biol Med; 2018 Jan; 92():168-175. PubMed ID: 29202321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided diagnosis of breast cancer using cytological images: A systematic review.
    Saha M; Mukherjee R; Chakraborty C
    Tissue Cell; 2016 Oct; 48(5):461-74. PubMed ID: 27528421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images.
    Kowal M; Filipczuk P; Obuchowicz A; Korbicz J; Monczak R
    Comput Biol Med; 2013 Oct; 43(10):1563-72. PubMed ID: 24034748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Mann-Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography.
    Pérez NP; Guevara López MA; Silva A; Ramos I
    Artif Intell Med; 2015 Jan; 63(1):19-31. PubMed ID: 25555756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast Cancer Diagnosis Using Feature Ensemble Learning Based on Stacked Sparse Autoencoders and Softmax Regression.
    Kadam VJ; Jadhav SM; Vijayakumar K
    J Med Syst; 2019 Jul; 43(8):263. PubMed ID: 31270634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.
    Milenković J; Hertl K; Košir A; Zibert J; Tasič JF
    Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnosing breast cancer based on support vector machines.
    Liu HX; Zhang RS; Luan F; Yao XJ; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2003; 43(3):900-7. PubMed ID: 12767148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review.
    Yassin NIR; Omran S; El Houby EMF; Allam H
    Comput Methods Programs Biomed; 2018 Mar; 156():25-45. PubMed ID: 29428074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis.
    Daliri MR
    Biomed Tech (Berl); 2012 Oct; 57(5):395-402. PubMed ID: 25854666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of fine-needle aspiration cytology in the diagnosis of breast cancer a single-center retrospective study from Turkey with cytohistological correlation in 733 cases.
    Aker F; Gümrükçü G; Onomay BÇ; Erkan M; Gürleyik G; Kiliçoğlu G; Karagüllü H
    Diagn Cytopathol; 2015 Dec; 43(12):978-86. PubMed ID: 26466750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective approach for breast cancer diagnosis based on routine blood analysis features.
    Yavuz E; Eyupoglu C
    Med Biol Eng Comput; 2020 Jul; 58(7):1583-1601. PubMed ID: 32436139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis.
    Jesneck JL; Nolte LW; Baker JA; Floyd CE; Lo JY
    Med Phys; 2006 Aug; 33(8):2945-54. PubMed ID: 16964873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable confidence measures for medical diagnosis with evolutionary algorithms.
    Lambrou A; Papadopoulos H; Gammerman A
    IEEE Trans Inf Technol Biomed; 2011 Jan; 15(1):93-9. PubMed ID: 21062682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing Breast Cancer Risk with an Artificial Neural Network.
    Sepandi M; Taghdir M; Rezaianzadeh A; Rahimikazerooni S
    Asian Pac J Cancer Prev; 2018 Apr; 19(4):1017-1019. PubMed ID: 29693975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: A comparative analysis.
    Mahersia H; Boulehmi H; Hamrouni K
    Comput Methods Programs Biomed; 2016 Apr; 126():46-62. PubMed ID: 26831269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnosis of breast cancer using Bayesian networks: a case study.
    Cruz-Ramírez N; Acosta-Mesa HG; Carrillo-Calvet H; Nava-Fernández LA; Barrientos-Martínez RE
    Comput Biol Med; 2007 Nov; 37(11):1553-64. PubMed ID: 17434159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast Cancer Detection with Reduced Feature Set.
    Mert A; Kılıç N; Bilgili E; Akan A
    Comput Math Methods Med; 2015; 2015():265138. PubMed ID: 26078774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification.
    Krawczyk B; Schaefer G; Woźniak M
    Artif Intell Med; 2015 Nov; 65(3):219-27. PubMed ID: 26319694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study.
    Patel BK; Ranjbar S; Wu T; Pockaj BA; Li J; Zhang N; Lobbes M; Zhang B; Mitchell JR
    Eur J Radiol; 2018 Jan; 98():207-213. PubMed ID: 29279165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloud-based decision support system for the detection and classification of malignant cells in breast cancer using breast cytology images.
    Saba T; Khan SU; Islam N; Abbas N; Rehman A; Javaid N; Anjum A
    Microsc Res Tech; 2019 Jun; 82(6):775-785. PubMed ID: 30697861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.