These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29202712)

  • 21. Sub-telomere directed gene expression during initiation of invasive aspergillosis.
    McDonagh A; Fedorova ND; Crabtree J; Yu Y; Kim S; Chen D; Loss O; Cairns T; Goldman G; Armstrong-James D; Haynes K; Haas H; Schrettl M; May G; Nierman WC; Bignell E
    PLoS Pathog; 2008 Sep; 4(9):e1000154. PubMed ID: 18787699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathway of glycine betaine biosynthesis in Aspergillus fumigatus.
    Lambou K; Pennati A; Valsecchi I; Tada R; Sherman S; Sato H; Beau R; Gadda G; Latgé JP
    Eukaryot Cell; 2013 Jun; 12(6):853-63. PubMed ID: 23563483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence.
    Moreno MA; Ibrahim-Granet O; Vicentefranqueira R; Amich J; Ave P; Leal F; Latgé JP; Calera JA
    Mol Microbiol; 2007 Jun; 64(5):1182-97. PubMed ID: 17542914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B.
    Gautam P; Shankar J; Madan T; Sirdeshmukh R; Sundaram CS; Gade WN; Basir SF; Sarma PU
    Antimicrob Agents Chemother; 2008 Dec; 52(12):4220-7. PubMed ID: 18838595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus.
    Wong Sak Hoi J; Lamarre C; Beau R; Meneau I; Berepiki A; Barre A; Mellado E; Read ND; Latgé JP
    Mol Biol Cell; 2011 Jun; 22(11):1896-906. PubMed ID: 21490150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin.
    Bruns S; Seidler M; Albrecht D; Salvenmoser S; Remme N; Hertweck C; Brakhage AA; Kniemeyer O; Müller FM
    Proteomics; 2010 Sep; 10(17):3097-107. PubMed ID: 20645385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The diverse applications of RNA-seq for functional genomic studies in Aspergillus fumigatus.
    Rokas A; Gibbons JG; Zhou X; Beauvais A; Latgé JP
    Ann N Y Acad Sci; 2012 Dec; 1273(1):25-34. PubMed ID: 23230834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two C4-sterol methyl oxidases (Erg25) catalyse ergosterol intermediate demethylation and impact environmental stress adaptation in Aspergillus fumigatus.
    Blosser SJ; Merriman B; Grahl N; Chung D; Cramer RA
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2492-2506. PubMed ID: 25107308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The sino-nasal warzone: transcriptomic and genomic studies on sino-nasal aspergillosis in dogs.
    Valdes ID; Hart de Ruijter ABP; Torres CJ; Breuker JCA; Wösten HAB; de Cock H
    NPJ Biofilms Microbiomes; 2020 Nov; 6(1):51. PubMed ID: 33184275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy.
    Hagiwara D; Takahashi H; Kusuya Y; Kawamoto S; Kamei K; Gonoi T
    BMC Genomics; 2016 May; 17():358. PubMed ID: 27185182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance.
    Brown NA; Goldman GH
    J Microbiol; 2016 Mar; 54(3):243-53. PubMed ID: 26920884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.
    Pongpom M; Liu H; Xu W; Snarr BD; Sheppard DC; Mitchell AP; Filler SG
    Infect Immun; 2015 Mar; 83(3):923-33. PubMed ID: 25534941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior.
    Irmer H; Tarazona S; Sasse C; Olbermann P; Loeffler J; Krappmann S; Conesa A; Braus GH
    BMC Genomics; 2015 Aug; 16(1):640. PubMed ID: 26311470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome analysis reveals a common adaptive transcriptional response of Candida glabrata to diverse environmental stresses.
    Rai MN; Rai R; Sethiya P; Parsania C
    Res Microbiol; 2023 Jun; 174(5):104073. PubMed ID: 37100335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic control of asexual development in aspergillus fumigatus.
    Alkhayyat F; Chang Kim S; Yu JH
    Adv Appl Microbiol; 2015; 90():93-107. PubMed ID: 25596030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel Zn
    Kusuya Y; Bian C; Hagiwara D; Ban S; Takahashi H
    Curr Genet; 2022 Dec; 68(5-6):605-617. PubMed ID: 35972528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence.
    Chung D; Barker BM; Carey CC; Merriman B; Werner ER; Lechner BE; Dhingra S; Cheng C; Xu W; Blosser SJ; Morohashi K; Mazurie A; Mitchell TK; Haas H; Mitchell AP; Cramer RA
    PLoS Pathog; 2014 Nov; 10(11):e1004487. PubMed ID: 25375670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HOG-MAPK signaling regulates the adaptive responses of Aspergillus fumigatus to thermal stress and other related stress.
    Ji Y; Yang F; Ma D; Zhang J; Wan Z; Liu W; Li R
    Mycopathologia; 2012 Oct; 174(4):273-82. PubMed ID: 22678624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus.
    Hagiwara D; Suzuki S; Kamei K; Gonoi T; Kawamoto S
    Fungal Genet Biol; 2014 Dec; 73():138-49. PubMed ID: 25459537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression.
    Beattie SR; Mark KMK; Thammahong A; Ries LNA; Dhingra S; Caffrey-Carr AK; Cheng C; Black CC; Bowyer P; Bromley MJ; Obar JJ; Goldman GH; Cramer RA
    PLoS Pathog; 2017 Apr; 13(4):e1006340. PubMed ID: 28423062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.