These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29203077)

  • 1. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.
    Röder M; Thornley P
    Waste Manag; 2018 Apr; 74():241-252. PubMed ID: 29203077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions.
    Merrild H; Christensen TH
    Waste Manag Res; 2009 Nov; 27(8):781-8. PubMed ID: 19837704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.
    Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J
    Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the production of bio-energy from wood biomass. Italian case study.
    González-García S; Bacenetti J
    Sci Total Environ; 2019 Jan; 647():158-168. PubMed ID: 30077846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a more comprehensive greenhouse gas emissions assessment of biofuels: the case of forest-based fischer-tropsch diesel production in Finland.
    Soimakallio S
    Environ Sci Technol; 2014; 48(5):3031-8. PubMed ID: 24528291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
    Tan ECD; Hawkins TR; Lee U; Tao L; Meyer PA; Wang M; Thompson T
    Environ Sci Technol; 2021 Jun; 55(11):7561-7570. PubMed ID: 33998807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels.
    Wolf C; Klein D; Richter K; Weber-Blaschke G
    J Environ Manage; 2016 Jul; 177():177-91. PubMed ID: 27100330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.
    Styles D; Dominguez EM; Chadwick D
    Sci Total Environ; 2016 Aug; 560-561():241-53. PubMed ID: 27101461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.
    Kolasa-Wiecek A
    J Environ Sci (China); 2015 Apr; 30():47-54. PubMed ID: 25872708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.
    Lemoine DM; Plevin RJ; Cohn AS; Jones AD; Brandt AR; Vergara SE; Kammen DM
    Environ Sci Technol; 2010 Oct; 44(19):7347-50. PubMed ID: 20873876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.
    Lausselet C; Cherubini F; Del Alamo Serrano G; Becidan M; Strømman AH
    Waste Manag; 2016 Dec; 58():191-201. PubMed ID: 27679967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of plastic: accounting of greenhouse gases and global warming contributions.
    Astrup T; Fruergaard T; Christensen TH
    Waste Manag Res; 2009 Nov; 27(8):763-72. PubMed ID: 19748943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts.
    Chen R; Qin Z; Han J; Wang M; Taheripour F; Tyner W; O'Connor D; Duffield J
    Bioresour Technol; 2018 Mar; 251():249-258. PubMed ID: 29287277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.