These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29203319)

  • 1. Critical power: How different protocols and models affect its determination.
    Mattioni Maturana F; Fontana FY; Pogliaghi S; Passfield L; Murias JM
    J Sci Med Sport; 2018 Jul; 21(7):742-747. PubMed ID: 29203319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical power testing or self-selected cycling: Which one is the best predictor of maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    J Sci Med Sport; 2017 Aug; 20(8):795-799. PubMed ID: 28302463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Critical Power in Elite Cyclists: Questioning the Validity of the 3-Minute All-Out Test.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2017 Jul; 12(6):783-787. PubMed ID: 27834562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Intermittent Cycling Performance in Hypoxia Using the Critical Power Concept.
    Shearman S; Dwyer D; Skiba P; Townsend N
    Med Sci Sports Exerc; 2016 Mar; 48(3):527-35. PubMed ID: 26460632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High agreement between laboratory and field estimates of critical power in cycling.
    Karsten B; Jobson SA; Hopker J; Jimenez A; Beedie C
    Int J Sports Med; 2014 Apr; 35(4):298-303. PubMed ID: 24022574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests.
    Simpson LP; Kordi M
    Int J Sports Physiol Perform; 2017 Jul; 12(6):825-830. PubMed ID: 27918663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Road cycle TT performance: Relationship to the power-duration model and association with FTP.
    Morgan PT; Black MI; Bailey SJ; Jones AM; Vanhatalo A
    J Sports Sci; 2019 Apr; 37(8):902-910. PubMed ID: 30387374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanistic bases of the power-time relationship: muscle metabolic responses and relationships to muscle fibre type.
    Vanhatalo A; Black MI; DiMenna FJ; Blackwell JR; Schmidt JF; Thompson C; Wylie LJ; Mohr M; Bangsbo J; Krustrup P; Jones AM
    J Physiol; 2016 Aug; 594(15):4407-23. PubMed ID: 26940850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J; de Souza KM; de Lucas RD; Guglielmo LG; Greco CC; Denadai BS
    PLoS One; 2015; 10(9):e0138428. PubMed ID: 26407169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 3-min test does not provide a valid measure of critical power using the SRM isokinetic mode.
    Karsten B; Jobson SA; Hopker J; Passfield L; Beedie C
    Int J Sports Med; 2014 Apr; 35(4):304-9. PubMed ID: 24022575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-pacing increases critical power and improves performance during severe-intensity exercise.
    Black MI; Jones AM; Bailey SJ; Vanhatalo A
    Appl Physiol Nutr Metab; 2015 Jul; 40(7):662-70. PubMed ID: 26088158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain.
    Sreedhara VSM; Ashtiani F; Mocko GM; Vahidi A; Hutchison RE
    Med Sci Sports Exerc; 2020 Dec; 52(12):2646-2654. PubMed ID: 32555021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF; Chidnok W; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI; Jones AM; Kelly JA; Bailey SJ; Vanhatalo A
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodological Approaches and Related Challenges Associated With the Determination of Critical Power and Curvature Constant.
    Muniz-Pumares D; Karsten B; Triska C; Glaister M
    J Strength Cond Res; 2019 Feb; 33(2):584-596. PubMed ID: 30531413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Load Determination for the 3-Minute All-Out Exercise Test for Cycle Ergometry.
    Dicks ND; Jamnick NA; Murray SR; Pettitt RW
    Int J Sports Physiol Perform; 2016 Mar; 11(2):197-203. PubMed ID: 26182439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-Derived Power-Duration Variables to Predict Cycling Time-Trial Performance.
    Nimmerichter A; Prinz B; Gumpenberger M; Heider S; Wirth K
    Int J Sports Physiol Perform; 2020 Sep; 15(8):1095-1102. PubMed ID: 32040941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.