These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29203319)

  • 21. The Reliability and Validity of the 3-min All-out Cycling Critical Power Test.
    Wright J; Bruce-Low S; Jobson SA
    Int J Sports Med; 2017 Jun; 38(6):462-467. PubMed ID: 28388783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validity of the 3-Minute All-Out Exercise Test on the CompuTrainer.
    Clark IE; Gartner HE; Williams JL; Pettitt RW
    J Strength Cond Res; 2016 Mar; 30(3):825-9. PubMed ID: 26340469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accuracy of W' Recovery Kinetics in High Performance Cyclists-Modeling Intermittent Work Capacity.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2018 Jul; 13(6):724-728. PubMed ID: 29035607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.
    Jones AM; Vanhatalo A
    Sports Med; 2017 Mar; 47(Suppl 1):65-78. PubMed ID: 28332113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y; Miura A; Endo M; Kan A; Yanagawa K; Whipp BJ
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of upright versus time trial cycling position on determination of critical power and W' in trained cyclists.
    Kordi M; Fullerton C; Passfield L; Parker Simpson L
    Eur J Sport Sci; 2019 Mar; 19(2):192-198. PubMed ID: 30009673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single-session testing protocol to determine critical power and W'.
    Constantini K; Sabapathy S; Cross TJ
    Eur J Appl Physiol; 2014 Jun; 114(6):1153-61. PubMed ID: 24563054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of oral creatine ingestion on parameters of the work rate-time relationship and time to exhaustion in high-intensity cycling.
    Smith JC; Stephens DP; Hall EL; Jackson AW; Earnest CP
    Eur J Appl Physiol Occup Physiol; 1998 Mar; 77(4):360-5. PubMed ID: 9562365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strength training increases endurance time to exhaustion during high-intensity exercise despite no change in critical power.
    Sawyer BJ; Stokes DG; Womack CJ; Morton RH; Weltman A; Gaesser GA
    J Strength Cond Res; 2014 Mar; 28(3):601-9. PubMed ID: 23760362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and field validation of an omni-domain power-duration model.
    Puchowicz MJ; Baker J; Clarke DC
    J Sports Sci; 2020 Apr; 38(7):801-813. PubMed ID: 32131692
    [No Abstract]   [Full Text] [Related]  

  • 33. Influence of hypoxia on the power-duration relationship during high-intensity exercise.
    Simpson LP; Jones AM; Skiba PF; Vanhatalo A; Wilkerson D
    Int J Sports Med; 2015 Feb; 36(2):113-9. PubMed ID: 25329429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of critical power with nonlinear and linear models.
    Gaesser GA; Carnevale TJ; Garfinkel A; Walter DO; Womack CJ
    Med Sci Sports Exerc; 1995 Oct; 27(10):1430-8. PubMed ID: 8531615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodological Reconciliation of CP and MLSS and Their Agreement with the Maximal Metabolic Steady State.
    Iannetta D; Ingram CP; Keir DA; Murias JM
    Med Sci Sports Exerc; 2022 Apr; 54(4):622-632. PubMed ID: 34816811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximal power output during incremental cycling test is dependent on the curvature constant of the power-time relationship.
    Souza KM; de Lucas RD; do Nascimento Salvador PC; Guglielmo LG; Caritá RA; Greco CC; Denadai BS
    Appl Physiol Nutr Metab; 2015 Sep; 40(9):895-8. PubMed ID: 26288395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of priming exercise on VO2 kinetics and the power-duration relationship.
    Burnley M; Davison G; Baker JR
    Med Sci Sports Exerc; 2011 Nov; 43(11):2171-9. PubMed ID: 21552161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The 3-min all-out test is valid for determining critical power but not anaerobic work capacity in tethered running.
    Gama MCT; Dos Reis IGM; Sousa FAB; Gobatto CA
    PLoS One; 2018; 13(2):e0192552. PubMed ID: 29444141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in the power-duration relationship following prolonged exercise: estimation using conventional and all-out protocols and relationship with muscle glycogen.
    Clark IE; Vanhatalo A; Thompson C; Wylie LJ; Bailey SJ; Kirby BS; Wilkins BW; Jones AM
    Am J Physiol Regul Integr Comp Physiol; 2019 Jul; 317(1):R59-R67. PubMed ID: 30995104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Application of Critical Power, the Work Capacity above Critical Power (W'), and its Reconstitution: A Narrative Review of Current Evidence and Implications for Cycling Training Prescription.
    Chorley A; Lamb KL
    Sports (Basel); 2020 Sep; 8(9):. PubMed ID: 32899777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.