BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29203592)

  • 1. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1.
    Wei C; Stock L; Valanejad L; Zalewski ZA; Karns R; Puymirat J; Nelson D; Witte D; Woodgett J; Timchenko NA; Timchenko L
    FASEB J; 2018 Apr; 32(4):2073-2085. PubMed ID: 29203592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of Glycogen Synthase Kinase 3β in Myotonic Dystrophy 1 Reduces the Mutant RNA and Improves Postnatal Survival of DMSXL Mice.
    Wang M; Weng WC; Stock L; Lindquist D; Martinez A; Gourdon G; Timchenko N; Snape M; Timchenko L
    Mol Cell Biol; 2019 Nov; 39(21):. PubMed ID: 31383751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1.
    Timchenko L
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GSK3β mediates muscle pathology in myotonic dystrophy.
    Jones K; Wei C; Iakova P; Bugiardini E; Schneider-Gold C; Meola G; Woodgett J; Killian J; Timchenko NA; Timchenko LT
    J Clin Invest; 2012 Dec; 122(12):4461-72. PubMed ID: 23160194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Targeting of the GSK3β-CUGBP1 Pathway in Myotonic Dystrophy.
    Lutz M; Levanti M; Karns R; Gourdon G; Lindquist D; Timchenko NA; Timchenko L
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GSK3β is a new therapeutic target for myotonic dystrophy type 1.
    Wei C; Jones K; Timchenko NA; Timchenko L
    Rare Dis; 2013; 1():e26555. PubMed ID: 25003008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1.
    Salisbury E; Sakai K; Schoser B; Huichalaf C; Schneider-Gold C; Nguyen H; Wang GL; Albrecht JH; Timchenko LT
    Exp Cell Res; 2008 Jul; 314(11-12):2266-78. PubMed ID: 18570922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1.
    Ward AJ; Rimer M; Killian JM; Dowling JJ; Cooper TA
    Hum Mol Genet; 2010 Sep; 19(18):3614-22. PubMed ID: 20603324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA Foci, CUGBP1, and ZNF9 are the primary targets of the mutant CUG and CCUG repeats expanded in myotonic dystrophies type 1 and type 2.
    Jones K; Jin B; Iakova P; Huichalaf C; Sarkar P; Schneider-Gold C; Schoser B; Meola G; Shyu AB; Timchenko N; Timchenko L
    Am J Pathol; 2011 Nov; 179(5):2475-89. PubMed ID: 21889481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GSK3beta-cyclin D3-CUGBP1-eIF2 pathway in aging and in myotonic dystrophy.
    Jin J; Wang GL; Salisbury E; Timchenko L; Timchenko NA
    Cell Cycle; 2009 Aug; 8(15):2356-9. PubMed ID: 19571675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis.
    Timchenko NA; Patel R; Iakova P; Cai ZJ; Quan L; Timchenko LT
    J Biol Chem; 2004 Mar; 279(13):13129-39. PubMed ID: 14722059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1.
    Koshelev M; Sarma S; Price RE; Wehrens XH; Cooper TA
    Hum Mol Genet; 2010 Mar; 19(6):1066-75. PubMed ID: 20051426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation.
    Kuyumcu-Martinez NM; Wang GS; Cooper TA
    Mol Cell; 2007 Oct; 28(1):68-78. PubMed ID: 17936705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy.
    Li M; Zhuang Y; Batra R; Thomas JD; Li M; Nutter CA; Scotti MM; Carter HA; Wang ZJ; Huang XS; Pu CQ; Swanson MS; Xie W
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5472-5477. PubMed ID: 32086392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulation of GSK3β-Target Proteins in Skin Fibroblasts of Myotonic Dystrophy Type 1 (DM1) Patients.
    Grande V; Hathazi D; O'Connor E; Marteau T; Schara-Schmidt U; Hentschel A; Gourdon G; Nikolenko N; Lochmüller H; Roos A
    J Neuromuscul Dis; 2021; 8(4):603-619. PubMed ID: 33682722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PKC inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy type 1.
    Wang GS; Kuyumcu-Martinez MN; Sarma S; Mathur N; Wehrens XH; Cooper TA
    J Clin Invest; 2009 Dec; 119(12):3797-806. PubMed ID: 19907076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mir-206 partially rescues myogenesis deficiency by inhibiting CUGBP1 accumulation in the cell models of myotonic dystrophy.
    Dong W; Chen X; Wang M; Zheng Z; Zhang X; Xiao Q; Peng X
    Neurol Res; 2019 Jan; 41(1):9-18. PubMed ID: 30281408
    [No Abstract]   [Full Text] [Related]  

  • 18. Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1.
    Wojciechowska M; Taylor K; Sobczak K; Napierala M; Krzyzosiak WJ
    RNA Biol; 2014; 11(6):742-54. PubMed ID: 24824895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcitriol increases MBNL1 expression and alleviates myotonic dystrophy phenotypes in HSA
    Huang K; Wang DD; Hu WB; Zeng WQ; Xu X; Li QX; Bi FF; Yang H; Qiu J
    J Transl Med; 2022 Dec; 20(1):588. PubMed ID: 36510245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded CTG repeats within the DMPK 3' UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy.
    Orengo JP; Chambon P; Metzger D; Mosier DR; Snipes GJ; Cooper TA
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2646-51. PubMed ID: 18272483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.