These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 29203646)
21. Analysis of proton wires in the enzyme active site suggests a mechanism of c-di-GMP hydrolysis by the EAL domain phosphodiesterases. Grigorenko BL; Knyazeva MA; Nemukhin AV Proteins; 2016 Nov; 84(11):1670-1680. PubMed ID: 27479508 [TBL] [Abstract][Full Text] [Related]
22. A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase. Mittelstädt G; Jiao W; Livingstone EK; Moggré GJ; Nazmi AR; Parker EJ Biochem J; 2018 Jan; 475(1):247-260. PubMed ID: 29208762 [TBL] [Abstract][Full Text] [Related]
23. Crystal structures of carboxypeptidase T complexes with transition-state analogs. Akparov VK; Timofeev VI; Khaliullin IG; Švedas V; Kuranova IP; Rakitina TV J Biomol Struct Dyn; 2018 Nov; 36(15):3958-3966. PubMed ID: 29129130 [No Abstract] [Full Text] [Related]
24. The trimeric Hef-associated nuclease HAN is a 3'→5' exonuclease and is probably involved in DNA repair. Feng L; Chang CC; Song D; Jiang C; Song Y; Wang CF; Deng W; Zou YJ; Chen HF; Xiao X; Wang FP; Liu XP Nucleic Acids Res; 2018 Sep; 46(17):9027-9043. PubMed ID: 30102394 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and degradation of cAMP in Saraullo V; Di Siervi N; Jerez B; Davio C; Zurita A Biochem J; 2017 Nov; 474(23):4001-4017. PubMed ID: 29054977 [TBL] [Abstract][Full Text] [Related]
26. Nuclease-Resistant c-di-AMP Derivatives That Differentially Recognize RNA and Protein Receptors. Meehan RE; Torgerson CD; Gaffney BL; Jones RA; Strobel SA Biochemistry; 2016 Feb; 55(6):837-49. PubMed ID: 26789423 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and degradation of the cyclic dinucleotide messenger c-di-AMP in the hyperthermophilic archaeon Pyrococcus yayanosii. Jin Z; Song D; Wang WW; Feng L; Li ZX; Chen HF; Xiao X; Liu XP Protein Sci; 2023 Dec; 32(12):e4829. PubMed ID: 37921047 [TBL] [Abstract][Full Text] [Related]
28. Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism. Summers EL; Cumming MH; Oulavallickal T; Roberts NJ; Arcus VL Protein Sci; 2017 Aug; 26(8):1627-1638. PubMed ID: 28543850 [TBL] [Abstract][Full Text] [Related]
29. The functional role of a conserved loop in EAL domain-based cyclic di-GMP-specific phosphodiesterase. Rao F; Qi Y; Chong HS; Kotaka M; Li B; Li J; Lescar J; Tang K; Liang ZX J Bacteriol; 2009 Aug; 191(15):4722-31. PubMed ID: 19376848 [TBL] [Abstract][Full Text] [Related]
30. Unique Substrate Specificity of SplE Serine Protease from Staphylococcus aureus. Stach N; Kalinska M; Zdzalik M; Kitel R; Karim A; Serwin K; Rut W; Larsen K; Jabaiah A; Firlej M; Wladyka B; Daugherty P; Stennicke H; Drag M; Potempa J; Dubin G Structure; 2018 Apr; 26(4):572-579.e4. PubMed ID: 29526434 [TBL] [Abstract][Full Text] [Related]
31. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. Schmidt AJ; Ryjenkov DA; Gomelsky M J Bacteriol; 2005 Jul; 187(14):4774-81. PubMed ID: 15995192 [TBL] [Abstract][Full Text] [Related]
32. Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. Wang J; Zhou J; Donaldson GP; Nakayama S; Yan L; Lam YF; Lee VT; Sintim HO J Am Chem Soc; 2011 Jun; 133(24):9320-30. PubMed ID: 21612220 [TBL] [Abstract][Full Text] [Related]
33. Structural insights into the substrate binding mechanism of novel ArgA from Mycobacterium tuberculosis. Das U; Singh E; Dharavath S; Tiruttani Subhramanyam UK; Pal RK; Vijayan R; Menon S; Kumar S; Gourinath S; Srinivasan A Int J Biol Macromol; 2019 Mar; 125():970-978. PubMed ID: 30576731 [TBL] [Abstract][Full Text] [Related]
34. Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. Commichau FM; Heidemann JL; Ficner R; Stülke J J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30224435 [TBL] [Abstract][Full Text] [Related]
35. Crystallographic snapshots of sulfur insertion by lipoyl synthase. McLaughlin MI; Lanz ND; Goldman PJ; Lee KH; Booker SJ; Drennan CL Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9446-50. PubMed ID: 27506792 [TBL] [Abstract][Full Text] [Related]
36. Biochemical characterization and structural insight into aliphatic β-amino acid adenylation enzymes IdnL1 and CmiS6. Cieślak J; Miyanaga A; Takaku R; Takaishi M; Amagai K; Kudo F; Eguchi T Proteins; 2017 Jul; 85(7):1238-1247. PubMed ID: 28316096 [TBL] [Abstract][Full Text] [Related]
37. Structural insight into the mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases. Tchigvintsev A; Xu X; Singer A; Chang C; Brown G; Proudfoot M; Cui H; Flick R; Anderson WF; Joachimiak A; Galperin MY; Savchenko A; Yakunin AF J Mol Biol; 2010 Sep; 402(3):524-38. PubMed ID: 20691189 [TBL] [Abstract][Full Text] [Related]
38. Crystal structure of Rv1220c, a SAM-dependent O-methyltransferase from Mycobacterium tuberculosis. Yan Q; Shaw N; Qian L; Jiang D Acta Crystallogr F Struct Biol Commun; 2017 Jun; 73(Pt 6):315-320. PubMed ID: 28580918 [TBL] [Abstract][Full Text] [Related]
39. Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. Römling U; Liang ZX; Dow JM J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 28031279 [TBL] [Abstract][Full Text] [Related]
40. Crystal structure of the RNA 2',3'-cyclic phosphodiesterase from Deinococcus radiodurans. Han W; Cheng J; Zhou C; Hua Y; Zhao Y Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):276-280. PubMed ID: 28471359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]