BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29203667)

  • 1. Electrostatic confinement and manipulation of DNA molecules for genome analysis.
    Kounovsky-Shafer KL; Hernandez-Ortiz JP; Potamousis K; Tsvid G; Place M; Ravindran P; Jo K; Zhou S; Odijk T; de Pablo JJ; Schwartz DC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13400-13405. PubMed ID: 29203667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single-molecule barcoding system using nanoslits for DNA analysis : nanocoding.
    Jo K; Schramm TM; Schwartz DC
    Methods Mol Biol; 2009; 544():29-42. PubMed ID: 19488691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presentation of large DNA molecules for analysis as nanoconfined dumbbells.
    Kounovsky-Shafer KL; Hernández-Ortiz JP; Jo K; Odijk T; de Pablo JJ; Schwartz DC
    Macromolecules; 2013 Oct; 46(20):8356-8368. PubMed ID: 24683272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA manipulation, sorting, and mapping in nanofluidic systems.
    Levy SL; Craighead HG
    Chem Soc Rev; 2010 Mar; 39(3):1133-52. PubMed ID: 20179829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic DNA Stretching Device for Single-Molecule Diagnostics.
    Onoshima D; Baba Y
    Methods Mol Biol; 2017; 1547():105-111. PubMed ID: 28044290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single-molecule barcoding system using nanoslits for DNA analysis.
    Jo K; Dhingra DM; Odijk T; de Pablo JJ; Graham MD; Runnheim R; Forrest D; Schwartz DC
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2673-8. PubMed ID: 17296933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb forces on DNA polymers in charged fluidic nanoslits.
    Ren Y; Stein D
    Phys Rev Lett; 2011 Feb; 106(6):068302. PubMed ID: 21405500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries.
    Campbell LC; Wilkinson MJ; Manz A; Camilleri P; Humphreys CJ
    Lab Chip; 2004 Jun; 4(3):225-9. PubMed ID: 15159783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automation of a single-DNA molecule stretching device.
    Sørensen KT; Lopacinska JM; Tommerup N; Silahtaroglu A; Kristensen A; Marie R
    Rev Sci Instrum; 2015 Jun; 86(6):063702. PubMed ID: 26133839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy.
    Forget AL; Dombrowski CC; Amitani I; Kowalczykowski SC
    Nat Protoc; 2013 Mar; 8(3):525-38. PubMed ID: 23411634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Confinement for Bridging Single-Cell Manipulation and Single-Molecule DNA Linearization.
    Yu M; Hou Y; Song R; Xu X; Yao S
    Small; 2018 Apr; 14(17):e1800229. PubMed ID: 29575689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of DNA through Ultrathin Nanoslits.
    Yang W; Radha B; Choudhary A; You Y; Mettela G; Geim AK; Aksimentiev A; Keerthi A; Dekker C
    Adv Mater; 2021 Mar; 33(11):e2007682. PubMed ID: 33522015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidic devices towards single DNA molecule sequence mapping.
    Marie R; Kristensen A
    J Biophotonics; 2012 Aug; 5(8-9):673-86. PubMed ID: 22815200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags.
    Chan EY; Goncalves NM; Haeusler RA; Hatch AJ; Larson JW; Maletta AM; Yantz GR; Carstea ED; Fuchs M; Wong GG; Gullans SR; Gilmanshin R
    Genome Res; 2004 Jun; 14(6):1137-46. PubMed ID: 15173119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge regulation in nanopore ionic field-effect transistors.
    Jiang Z; Stein D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031203. PubMed ID: 21517487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous stretching of DNA in a two-dimensional nanoslit.
    Krishnan M; Mönch I; Schwille P
    Nano Lett; 2007 May; 7(5):1270-5. PubMed ID: 17439185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing of laminar flow cells for single-molecule experiments.
    Ahmadi A; Till K; Hafting Y; Schüttpelz M; Bjørås M; Glette K; Tørresen J; Rowe AD; Dalhus B
    Sci Rep; 2019 Nov; 9(1):16784. PubMed ID: 31727950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denaturing gradient-based two-dimensional gene mutation scanning in a polymer microfluidic network.
    Buch JS; Rosenberger F; Highsmith WE; Kimball C; DeVoe DL; Lee CS
    Lab Chip; 2005 Apr; 5(4):392-400. PubMed ID: 15791336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.