These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 29203764)
1. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Wu P; Li T; Li R; Jia L; Zhu P; Liu Y; Chen Q; Tang D; Yu Y; Li C Nat Commun; 2017 Dec; 8(1):1937. PubMed ID: 29203764 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type. Zhang L; Xu M; Zhang W; Zhu C; Cui Z; Fu H; Ma Y; Huang S; Cui J; Liang S; Huang L; Wang H Cell Mol Biol Lett; 2023 Jan; 28(1):1. PubMed ID: 36609218 [TBL] [Abstract][Full Text] [Related]
3. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. Xu L; Yin L; Qi Y; Tan X; Gao M; Peng J Acta Pharm Sin B; 2021 Oct; 11(10):3150-3164. PubMed ID: 34729306 [TBL] [Abstract][Full Text] [Related]
4. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines. Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Taberlay PC; Achinger-Kawecka J; Lun AT; Buske FA; Sabir K; Gould CM; Zotenko E; Bert SA; Giles KA; Bauer DC; Smyth GK; Stirzaker C; O'Donoghue SI; Clark SJ Genome Res; 2016 Jun; 26(6):719-31. PubMed ID: 27053337 [TBL] [Abstract][Full Text] [Related]
6. Alterations in Three-Dimensional Organization of the Cancer Genome and Epigenome. Achinger-Kawecka J; Taberlay PC; Clark SJ Cold Spring Harb Symp Quant Biol; 2016; 81():41-51. PubMed ID: 28424341 [TBL] [Abstract][Full Text] [Related]
7. Identification of copy number variations and translocations in cancer cells from Hi-C data. Chakraborty A; Ay F Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467 [TBL] [Abstract][Full Text] [Related]
8. Formation of new chromatin domains determines pathogenicity of genomic duplications. Franke M; Ibrahim DM; Andrey G; Schwarzer W; Heinrich V; Schöpflin R; Kraft K; Kempfer R; Jerković I; Chan WL; Spielmann M; Timmermann B; Wittler L; Kurth I; Cambiaso P; Zuffardi O; Houge G; Lambie L; Brancati F; Pombo A; Vingron M; Spitz F; Mundlos S Nature; 2016 Oct; 538(7624):265-269. PubMed ID: 27706140 [TBL] [Abstract][Full Text] [Related]
9. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data. Wang S; Lee S; Chu C; Jain D; Kerpedjiev P; Nelson GM; Walsh JM; Alver BH; Park PJ Genome Biol; 2020 Mar; 21(1):73. PubMed ID: 32293513 [TBL] [Abstract][Full Text] [Related]
11. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution. Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556 [TBL] [Abstract][Full Text] [Related]
12. Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms. Hoang PH; Dobbins SE; Cornish AJ; Chubb D; Law PJ; Kaiser M; Houlston RS Leukemia; 2018 Nov; 32(11):2459-2470. PubMed ID: 29654271 [TBL] [Abstract][Full Text] [Related]
13. Determination of the 3D Genome Organization of Bacteria Using Hi-C. Crémazy FG; Rashid FM; Haycocks JR; Lamberte LE; Grainger DC; Dame RT Methods Mol Biol; 2018; 1837():3-18. PubMed ID: 30109602 [TBL] [Abstract][Full Text] [Related]
14. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625 [TBL] [Abstract][Full Text] [Related]
15. LPAD: using network construction and label propagation to detect topologically associating domains from Hi-C data. Liu J; Li P; Sun J; Guo J Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139561 [TBL] [Abstract][Full Text] [Related]
16. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482 [TBL] [Abstract][Full Text] [Related]
17. DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication. Sun Z; Wang Y; Song Z; Zhang H; Wang Y; Liu K; Ma M; Wang P; Fang Y; Cai D; Li G; Fang Y J Adv Res; 2022 Dec; 42():41-53. PubMed ID: 35933090 [TBL] [Abstract][Full Text] [Related]
18. Application of Restriction Site-Associated DNA Sequencing (RAD-Seq) for Copy Number Variation and Triploidy Detection in Human. He JC; Li SY; He WZ; Xian JJ; Ma XY; Wang YC; Zhang MC; Ye GX; Liang B; Xia Q; Li Q Cytogenet Genome Res; 2021; 161(8-9):406-413. PubMed ID: 34657031 [TBL] [Abstract][Full Text] [Related]
19. Integrative Analysis of Genome, 3D Genome, and Transcriptome Alterations of Clinical Lung Cancer Samples. Li T; Li R; Dong X; Shi L; Lin M; Peng T; Wu P; Liu Y; Li X; He X; Han X; Kang B; Wang Y; Liu Z; Chen Q; Shen Y; Feng M; Wang X; Wu D; Wang J; Li C Genomics Proteomics Bioinformatics; 2021 Oct; 19(5):741-753. PubMed ID: 34116262 [TBL] [Abstract][Full Text] [Related]
20. A Comparison of Topologically Associating Domain Callers Based on Hi-C Data. Liu K; Li HD; Li Y; Wang J; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):15-29. PubMed ID: 35104223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]