These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 29203910)
1. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Verma N; Pan H; Doré LC; Shukla A; Li QV; Pelham-Webb B; Teijeiro V; González F; Krivtsov A; Chang CJ; Papapetrou EP; He C; Elemento O; Huangfu D Nat Genet; 2018 Jan; 50(1):83-95. PubMed ID: 29203910 [TBL] [Abstract][Full Text] [Related]
2. TET1 Deficiency Impairs Morphogen-free Differentiation of Human Embryonic Stem Cells to Neuroectoderm. Li H; Hu Z; Jiang H; Pu J; Selli I; Qiu J; Zhang B; Feng J Sci Rep; 2020 Jun; 10(1):10343. PubMed ID: 32587369 [TBL] [Abstract][Full Text] [Related]
3. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Putiri EL; Tiedemann RL; Thompson JJ; Liu C; Ho T; Choi JH; Robertson KD Genome Biol; 2014 Jun; 15(6):R81. PubMed ID: 24958354 [TBL] [Abstract][Full Text] [Related]
4. Deletion of Tet proteins results in quantitative disparities during ESC differentiation partially attributable to alterations in gene expression. Reimer M; Pulakanti K; Shi L; Abel A; Liang M; Malarkannan S; Rao S BMC Dev Biol; 2019 Jul; 19(1):16. PubMed ID: 31286885 [TBL] [Abstract][Full Text] [Related]
5. TET-mediated DNA demethylation plays an important role in arsenic-induced HBE cells oxidative stress via regulating promoter methylation of OGG1 and GSTP1. Wang Q; Wang W; Zhang A Toxicol In Vitro; 2021 Apr; 72():105075. PubMed ID: 33388378 [TBL] [Abstract][Full Text] [Related]
6. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Huang Y; Chavez L; Chang X; Wang X; Pastor WA; Kang J; Zepeda-Martínez JA; Pape UJ; Jacobsen SE; Peters B; Rao A Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1361-6. PubMed ID: 24474761 [TBL] [Abstract][Full Text] [Related]
7. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dawlaty MM; Breiling A; Le T; Barrasa MI; Raddatz G; Gao Q; Powell BE; Cheng AW; Faull KF; Lyko F; Jaenisch R Dev Cell; 2014 Apr; 29(1):102-11. PubMed ID: 24735881 [TBL] [Abstract][Full Text] [Related]
8. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Lan Y; Banks KM; Pan H; Verma N; Dixon GR; Zhou T; Ding B; Elemento O; Chen S; Huangfu D; Evans T Cell Rep; 2021 Dec; 37(10):110095. PubMed ID: 34879277 [TBL] [Abstract][Full Text] [Related]
9. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL. Poole CJ; Lodh A; Choi JH; van Riggelen J Epigenetics Chromatin; 2019 Jul; 12(1):41. PubMed ID: 31266538 [TBL] [Abstract][Full Text] [Related]
10. Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Cakouros D; Hemming S; Gronthos K; Liu R; Zannettino A; Shi S; Gronthos S Epigenetics Chromatin; 2019 Jan; 12(1):3. PubMed ID: 30606231 [TBL] [Abstract][Full Text] [Related]
11. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Ficz G; Branco MR; Seisenberger S; Santos F; Krueger F; Hore TA; Marques CJ; Andrews S; Reik W Nature; 2011 May; 473(7347):398-402. PubMed ID: 21460836 [TBL] [Abstract][Full Text] [Related]
12. Oxygen gradients can determine epigenetic asymmetry and cellular differentiation via differential regulation of Tet activity in embryonic stem cells. Burr S; Caldwell A; Chong M; Beretta M; Metcalf S; Hancock M; Arno M; Balu S; Kropf VL; Mistry RK; Shah AM; Mann GE; Brewer AC Nucleic Acids Res; 2018 Feb; 46(3):1210-1226. PubMed ID: 29186571 [TBL] [Abstract][Full Text] [Related]
13. Selective inhibition of CTCF binding by iAs directs TET-mediated reprogramming of 5-hydroxymethylation patterns in iAs-transformed cells. Rea M; Gripshover T; Fondufe-Mittendorf Y Toxicol Appl Pharmacol; 2018 Jan; 338():124-133. PubMed ID: 29175454 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms that regulate the activities of TET proteins. Joshi K; Liu S; Breslin S J P; Zhang J Cell Mol Life Sci; 2022 Jun; 79(7):363. PubMed ID: 35705880 [TBL] [Abstract][Full Text] [Related]
15. Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Li X; Yue X; Pastor WA; Lin L; Georges R; Chavez L; Evans SM; Rao A Proc Natl Acad Sci U S A; 2016 Dec; 113(51):E8267-E8276. PubMed ID: 27930333 [TBL] [Abstract][Full Text] [Related]
16. TET proteins and 5-methylcytosine oxidation in hematological cancers. Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268 [TBL] [Abstract][Full Text] [Related]
17. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Okashita N; Kumaki Y; Ebi K; Nishi M; Okamoto Y; Nakayama M; Hashimoto S; Nakamura T; Sugasawa K; Kojima N; Takada T; Okano M; Seki Y Development; 2014 Jan; 141(2):269-80. PubMed ID: 24335252 [TBL] [Abstract][Full Text] [Related]
18. Structure and Function of TET Enzymes. Yin X; Xu Y Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843 [TBL] [Abstract][Full Text] [Related]
19. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Blaschke K; Ebata KT; Karimi MM; Zepeda-Martínez JA; Goyal P; Mahapatra S; Tam A; Laird DJ; Hirst M; Rao A; Lorincz MC; Ramalho-Santos M Nature; 2013 Aug; 500(7461):222-6. PubMed ID: 23812591 [TBL] [Abstract][Full Text] [Related]
20. Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells. Grosser C; Wagner N; Grothaus K; Horsthemke B Epigenetics; 2015; 10(9):819-33. PubMed ID: 26186463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]