These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29203924)

  • 21. Molecular data indicate the protostome affinity of brachiopods.
    de Rosa R
    Syst Biol; 2001; 50(6):848-59. PubMed ID: 12116636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida).
    Hausdorf B; Helmkampf M; Nesnidal MP; Bruchhaus I
    Mol Phylogenet Evol; 2010 Jun; 55(3):1121-7. PubMed ID: 20045074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myoanatomy of the phoronid Phoronis ovalis: functional and phylogenetic implications.
    Temereva EN
    Zoology (Jena); 2019 Apr; 133():27-39. PubMed ID: 30979388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept.
    Helmkampf M; Bruchhaus I; Hausdorf B
    Proc Biol Sci; 2008 Aug; 275(1645):1927-33. PubMed ID: 18495619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid-bryozoan stem lineage.
    Wernström JV; Gąsiorowski L; Hejnol A
    Evodevo; 2022 Sep; 13(1):17. PubMed ID: 36123753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans.
    Marlétaz F; Peijnenburg KTCA; Goto T; Satoh N; Rokhsar DS
    Curr Biol; 2019 Jan; 29(2):312-318.e3. PubMed ID: 30639106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromosome-level genome assemblies of two littorinid marine snails indicate genetic basis of intertidal adaptation and ancient karyotype evolved from bilaterian ancestors.
    Wang YS; Li MY; Li YL; Li YQ; Xue DX; Liu JX
    Gigascience; 2024 Jan; 13():. PubMed ID: 39320316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition.
    Hoffmann FG; Opazo JC; Hoogewijs D; Hankeln T; Ebner B; Vinogradov SN; Bailly X; Storz JF
    Mol Biol Evol; 2012 Jul; 29(7):1735-45. PubMed ID: 22319164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily.
    Franke FA; Schumann I; Hering L; Mayer G
    Evol Dev; 2015; 17(1):3-20. PubMed ID: 25627710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary history of the NLR gene families across lophotrochozoans.
    Zhu X; Mu K; Wan Y; Zhang L
    Gene; 2022 Nov; 843():146807. PubMed ID: 35964873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals.
    Takahashi T; McDougall C; Troscianko J; Chen WC; Jayaraman-Nagarajan A; Shimeld SM; Ferrier DE
    BMC Evol Biol; 2009 Sep; 9():240. PubMed ID: 19781084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Larval development of Phoronis pallida (Phoronida): implications for morphological convergence and divergence among larval body plans.
    Santagata S
    J Morphol; 2004 Mar; 259(3):347-58. PubMed ID: 14994333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular evolution of peptidergic signaling systems in bilaterians.
    Mirabeau O; Joly JS
    Proc Natl Acad Sci U S A; 2013 May; 110(22):E2028-37. PubMed ID: 23671109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly.
    Passamaneck Y; Halanych KM
    Mol Phylogenet Evol; 2006 Jul; 40(1):20-8. PubMed ID: 16556507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multigene analysis of lophophorate and chaetognath phylogenetic relationships.
    Helmkampf M; Bruchhaus I; Hausdorf B
    Mol Phylogenet Evol; 2008 Jan; 46(1):206-14. PubMed ID: 17937996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Convergent evolution of bilaterian nerve cords.
    Martín-Durán JM; Pang K; Børve A; Lê HS; Furu A; Cannon JT; Jondelius U; Hejnol A
    Nature; 2018 Jan; 553(7686):45-50. PubMed ID: 29236686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia.
    Philippe H; Lartillot N; Brinkmann H
    Mol Biol Evol; 2005 May; 22(5):1246-53. PubMed ID: 15703236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Who came first--larvae or adults? origins of bilaterian metazoan larvae.
    Sly BJ; Snoke MS; Raff RA
    Int J Dev Biol; 2003; 47(7-8):623-32. PubMed ID: 14756338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization.
    Luo YJ; Takeuchi T; Koyanagi R; Yamada L; Kanda M; Khalturina M; Fujie M; Yamasaki SI; Endo K; Satoh N
    Nat Commun; 2015 Sep; 6():8301. PubMed ID: 26383154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenomics meets neuroscience: how many times might complex brains have evolved?
    Moroz LL
    Acta Biol Hung; 2012; 63 Suppl 2(0 2):3-19. PubMed ID: 22776469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.