BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29204149)

  • 1. Diversity in Grain Amaranths and Relatives Distinguished by Genotyping by Sequencing (GBS).
    Wu X; Blair MW
    Front Plant Sci; 2017; 8():1960. PubMed ID: 29204149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of Cultivated Grain Amaranth Species and Wild Relative Accessions.
    Thapa R; Edwards M; Blair MW
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946796
    [No Abstract]   [Full Text] [Related]  

  • 3. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop.
    Stetter MG; Schmid KJ
    Mol Phylogenet Evol; 2017 Apr; 109():80-92. PubMed ID: 28057554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus).
    Stetter MG; Müller T; Schmid KJ
    Mol Ecol; 2017 Feb; 26(3):871-886. PubMed ID: 28019043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PopAmaranth: a population genetic genome browser for grain amaranths and their wild relatives.
    Gonçalves-Dias J; Stetter MG
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33822034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of Andean and Mesoamerican accessions in a proposed core collection of grain amaranths.
    Blair MW; Londoño JM; Buitrago-Bitar MA; Wu X; Brenner DM
    Front Plant Sci; 2023; 14():1144681. PubMed ID: 37035062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cot DNA sequences for fingerprinting analysis of germplasm diversity and relationships in Amaranthus.
    Sun M; Chen H; Leung FC
    Theor Appl Genet; 1999 Aug; 99(3-4):464-72. PubMed ID: 22665179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allozyme variation and evolutionary relationships of grain amaranths (Amaranthus spp.).
    Hauptli H; Jain S
    Theor Appl Genet; 1984 Dec; 69(2):153-65. PubMed ID: 24253706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic diversity analysis and marker-trait associations in Amaranthus species.
    Jamalluddin N; Massawe FJ; Mayes S; Ho WK; Symonds RC
    PLoS One; 2022; 17(5):e0267752. PubMed ID: 35551526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers.
    Xu F; Sun M
    Mol Phylogenet Evol; 2001 Dec; 21(3):372-87. PubMed ID: 11741380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Grain Amaranths Using Chromosome-Level Genome Assembly of Ramdana,
    Deb S; Jayaprasad S; Ravi S; Rao KR; Whadgar S; Hariharan N; Dixit S; Sunil M; Choudhary B; Stevanato P; Ramireddy E; Srinivasan S
    Front Plant Sci; 2020; 11():579529. PubMed ID: 33262776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and improvement of cultivated amaranths : VI. Cytogenetic relationships in grain types.
    Pal M; Khoshoo TN
    Theor Appl Genet; 1973 Jan; 43(5):242-51. PubMed ID: 24425076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker for the identification of Amaranthus cruentus species.
    Park YJ; Nishikawa T; Matsushima K; Minami M; Nemoto K
    Breed Sci; 2014 Dec; 64(4):422-6. PubMed ID: 25914599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae).
    Chaney L; Mangelson R; Ramaraj T; Jellen EN; Maughan PJ
    Appl Plant Sci; 2016 Sep; 4(9):. PubMed ID: 27672525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel Seed Color Adaptation during Multiple Domestication Attempts of an Ancient New World Grain.
    Stetter MG; Vidal-Villarejo M; Schmid KJ
    Mol Biol Evol; 2020 May; 37(5):1407-1419. PubMed ID: 31860092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal.
    Sunil M; Hariharan AK; Nayak S; Gupta S; Nambisan SR; Gupta RP; Panda B; Choudhary B; Srinivasan S
    DNA Res; 2014 Dec; 21(6):585-602. PubMed ID: 25071079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid identification of Amaranthus caudatus and Amaranthus hypochondriacus by sequencing and PCR-RFLP analysis of two starch synthase genes.
    Park YJ; Nishikawa T
    Genome; 2012 Aug; 55(8):623-8. PubMed ID: 22892013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotyping by Sequencing (GBS) in Apricots and Genetic Diversity Assessment with GBS-Derived Single-Nucleotide Polymorphisms (SNPs).
    Gürcan K; Teber S; Ercisli S; Yilmaz KU
    Biochem Genet; 2016 Dec; 54(6):854-885. PubMed ID: 27465591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing.
    Taranto F; D'Agostino N; Greco B; Cardi T; Tripodi P
    BMC Genomics; 2016 Nov; 17(1):943. PubMed ID: 27871227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel SNP panel developed for targeted genotyping-by-sequencing (GBS) reveals genetic diversity and population structure of Musa spp. germplasm collection.
    Gardoce RR; Manohar ANC; Mendoza JS; Tejano MS; Nocum JDL; Lachica GC; Gueco LS; Cueva FMD; Lantican DV
    Mol Genet Genomics; 2023 Jul; 298(4):857-869. PubMed ID: 37085697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.