These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29204569)

  • 1. Assessment of rock musician's efferent system functioning using contralateral suppression of otoacoustic emissions.
    Kumar P; Grover V; Publius A S; Sanju HK; Sinha S
    World J Otorhinolaryngol Head Neck Surg; 2016 Dec; 2(4):214-218. PubMed ID: 29204569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heightened OAEs in young adult musicians: Influence of current noise exposure and training recency.
    Main M; Skoe E
    Hear Res; 2024 Feb; 442():108925. PubMed ID: 38141520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Relationship Between Musicianship and Contralateral Suppression of Transient-Evoked Otoacoustic Emissions.
    Stuart A; Daughtrey ER
    J Am Acad Audiol; 2016 Apr; 27(4):333-44. PubMed ID: 27115243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient evoked otoacoustic emissions in rock musicians.
    Høydal EH; Lein Størmer CC; Laukli E; Stenklev NC
    Int J Audiol; 2017 Sep; 56(9):685-691. PubMed ID: 28471285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustically and electrically evoked contralateral suppression of otoacoustic emissions in guinea pigs.
    Popelár J; Valvoda J; Syka J
    Hear Res; 1999 Sep; 135(1-2):61-70. PubMed ID: 10491955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study.
    Bolay H; Bayazit YA; Gündüz B; Ugur AK; Akçali D; Altunyay S; Ilica S; Babacan A
    Cephalalgia; 2008 Apr; 28(4):309-17. PubMed ID: 18279433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: multiparametric recording of evoked otoacoustic emissions and contralateral suppression.
    Paglialonga A; Del Bo L; Ravazzani P; Tognola G
    Auris Nasus Larynx; 2010 Jun; 37(3):291-8. PubMed ID: 19879078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occupational exposure to noise decreases otoacoustic emission efferent suppression.
    Sliwinska-Kowalska M; Kotylo P
    Int J Audiol; 2002 Mar; 41(2):113-9. PubMed ID: 12212856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contralateral auditory stimulation alters acoustic distortion products in humans.
    Moulin A; Collet L; Duclaux R
    Hear Res; 1993 Feb; 65(1-2):193-210. PubMed ID: 8458751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB; Keefe DH; Hunter LL; Garinis AC; Fitzpatrick DF; McMillan GP; Feeney MP
    Ear Hear; 2017; 38(4):507-520. PubMed ID: 28437273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of the suppression effect on transient evoked otoacoustic emissions by prolonged contralateral acoustic stimulation.
    Kang HW; Shim HJ; Song SJ; Lee SH; Yoon SW
    Korean J Audiol; 2012 Dec; 16(3):114-9. PubMed ID: 24653884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contralateral suppression of otoacoustic emissions in pre-school children.
    Jedrzejczak WW; Pilka E; Skarzynski PH; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2020 May; 132():109915. PubMed ID: 32028191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient evoked otoacoustic emissions and contralateral suppressions in children with auditory listening problems.
    Yalçinkaya F; Yilmaz ST; Muluk NB
    Auris Nasus Larynx; 2010 Feb; 37(1):47-54. PubMed ID: 19411150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of transiently evoked and distortion-product otoacoustic emissions in humans.
    Probst R; Harris FP
    Prog Brain Res; 1993; 97():91-9. PubMed ID: 8234771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Increased amplitude of distortion product emissions in the human caused by contralateral low intensity acoustic stimulation].
    Nieschalk M; Beneking R; Stoll W
    HNO; 1997 May; 45(5):378-84. PubMed ID: 9265021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contralateral suppression of transient-evoked otoacoustic emissions in children with sickle cell disease.
    Stuart A; Preast JL
    Ear Hear; 2012; 33(3):421-9. PubMed ID: 22246207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in cochlear efferent activity between musicians and non-musicians.
    Micheyl C; Khalfa S; Perrot X; Collet L
    Neuroreport; 1997 Mar; 8(4):1047-50. PubMed ID: 9141090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral suppression of distortion-product otoacoustic emissions: a potential diagnostic tool to evaluate the vestibular nerve.
    Chang MY; Song JJ; Kim JS; Koo JW
    Med Hypotheses; 2013 Nov; 81(5):830-3. PubMed ID: 24074898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.