These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29204770)

  • 1. Species of family Promicromonosporaceae and family Cellulomonadeceae that produce cellulosome-like multiprotein complexes.
    Wang W; Yu Y; Dou TY; Wang JY; Sun C
    Biotechnol Lett; 2018 Feb; 40(2):335-341. PubMed ID: 29204770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and structural properties of a novel cellulosome-like multienzyme complex: efficient glycoside hydrolysis of water-insoluble 7-xylosyl-10-deacetylpaclitaxel.
    Dou TY; Luan HW; Ge GB; Dong MM; Zou HF; He YQ; Cui P; Wang JY; Hao DC; Yang SL; Yang L
    Sci Rep; 2015 Sep; 5():13768. PubMed ID: 26347949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic hydrolysis of 7-xylosyltaxanes by an extracellular xylosidase from Cellulosimicrobium cellulans.
    Dou TY; Luan HW; Liu XB; Li SY; Du XF; Yang L
    Biotechnol Lett; 2015 Sep; 37(9):1905-10. PubMed ID: 26026963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and subunit compositions of the xylanosome complexes produced by Cellulosimicrobium species.
    Dou TY; Chen J; Liu C
    Enzyme Microb Technol; 2020 Feb; 133():109445. PubMed ID: 31874683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Different Carbon Sources on Enzyme Production and Ultrastructure of Cellulosimicrobium cellulans.
    Dou TY; Chen J; Hao YF; Qi X
    Curr Microbiol; 2019 Mar; 76(3):355-360. PubMed ID: 30684027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions.
    Waeonukul R; Kyu KL; Sakka K; Ratanakhanokchai K
    J Biosci Bioeng; 2009 Jun; 107(6):610-4. PubMed ID: 19447336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cellulosome--a treasure-trove for biotechnology.
    Bayer EA; Morag E; Lamed R
    Trends Biotechnol; 1994 Sep; 12(9):379-86. PubMed ID: 7765191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and subunit structure of the xylanosome complex produced by Actinotalea fermentans JCM9966.
    Dou TY; Chen J; Liu WJ; Wang L
    Biotechnol Lett; 2020 Jan; 42(1):143-149. PubMed ID: 31720977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, Substrate Specificity, and Subunit Characterization of the Xylanosomes Produced by Oerskovia turbata JCM 3160.
    Dou TY; Liu WJ; Chen J
    Curr Microbiol; 2020 Jun; 77(6):924-930. PubMed ID: 31980859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex.
    Smith SP; Bayer EA; Czjzek M
    Curr Opin Struct Biol; 2017 Jun; 44():151-160. PubMed ID: 28390861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
    Artzi L; Bayer EA; Moraïs S
    Nat Rev Microbiol; 2017 Feb; 15(2):83-95. PubMed ID: 27941816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
    Hirano K; Nihei S; Hasegawa H; Haruki M; Hirano N
    Appl Environ Microbiol; 2015 Jul; 81(14):4756-66. PubMed ID: 25956772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes.
    Bae J; Morisaka H; Kuroda K; Ueda M
    J Mol Microbiol Biotechnol; 2013; 23(4-5):370-8. PubMed ID: 23920499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.
    Chen C; Cui Z; Song X; Liu YJ; Cui Q; Feng Y
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2203-12. PubMed ID: 26521249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli expression, purification, crystallization, and structure determination of bacterial cohesin-dockerin complexes.
    Brás JL; Carvalho AL; Viegas A; Najmudin S; Alves VD; Prates JA; Ferreira LM; Romão MJ; Gilbert HJ; Fontes CM
    Methods Enzymol; 2012; 510():395-415. PubMed ID: 22608738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation.
    Béguin P; Lemaire M
    Crit Rev Biochem Mol Biol; 1996 Jun; 31(3):201-36. PubMed ID: 8817076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex.
    Smith SP; Bayer EA
    Curr Opin Struct Biol; 2013 Oct; 23(5):686-94. PubMed ID: 24080387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From cellulosomes to cellulosomics.
    Bayer EA; Lamed R; White BA; Flint HJ
    Chem Rec; 2008; 8(6):364-77. PubMed ID: 19107866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cellulosome: the exocellular organelle of Clostridium.
    Felix CR; Ljungdahl LG
    Annu Rev Microbiol; 1993; 47():791-819. PubMed ID: 8257116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.