BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29204829)

  • 1. Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche.
    Marichal N; Reali C; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1041():55-79. PubMed ID: 29204829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury.
    Fabbiani G; Reali C; Valentín-Kahan A; Rehermann MI; Fagetti J; Falco MV; Russo RE
    J Neurosci; 2020 Mar; 40(11):2246-2258. PubMed ID: 32001613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
    Hamilton LK; Truong MK; Bednarczyk MR; Aumont A; Fernandes KJ
    Neuroscience; 2009 Dec; 164(3):1044-56. PubMed ID: 19747531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury.
    Marichal N; Reali C; Rehermann MI; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1015():241-264. PubMed ID: 29080030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius).
    Gilbert EAB; Vickaryous MK
    J Comp Neurol; 2018 Feb; 526(2):285-309. PubMed ID: 28980312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ependymal cell reactions in spinal cord segments after compression injury in adult rat.
    Takahashi M; Arai Y; Kurosawa H; Sueyoshi N; Shirai S
    J Neuropathol Exp Neurol; 2003 Feb; 62(2):185-94. PubMed ID: 12578228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord.
    Marichal N; García G; Radmilovich M; Trujillo-Cenóz O; Russo RE
    Stem Cells; 2012 Sep; 30(9):2020-31. PubMed ID: 22821702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Akhirin regulates the proliferation and differentiation of neural stem cells in intact and injured mouse spinal cord.
    Abdulhaleem FA; Song X; Kawano R; Uezono N; Ito A; Ahmed G; Hossain M; Nakashima K; Tanaka H; Ohta K
    Dev Neurobiol; 2015 May; 75(5):494-504. PubMed ID: 25331329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current states of endogenous stem cells in adult spinal cord.
    Qin Y; Zhang W; Yang P
    J Neurosci Res; 2015 Mar; 93(3):391-8. PubMed ID: 25228050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous neural stem cell responses to stroke and spinal cord injury.
    Grégoire CA; Goldenstein BL; Floriddia EM; Barnabé-Heider F; Fernandes KJ
    Glia; 2015 Aug; 63(8):1469-82. PubMed ID: 25921491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats.
    Shibuya S; Miyamoto O; Itano T; Mori S; Norimatsu H
    Glia; 2003 Apr; 42(2):172-83. PubMed ID: 12655601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spinal cord ependymal region: a stem cell niche in the caudal central nervous system.
    Hugnot JP; Franzen R
    Front Biosci (Landmark Ed); 2011 Jan; 16(3):1044-59. PubMed ID: 21196217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organization of ependyma in regenerating teleost spinal cord: evidence from serial section reconstructions.
    Anderson MJ; Choy CY; Waxman SG
    J Embryol Exp Morphol; 1986 Jul; 96():1-18. PubMed ID: 3805978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time.
    Li X; Floriddia EM; Toskas K; Fernandes KJL; Guérout N; Barnabé-Heider F
    EBioMedicine; 2016 Nov; 13():55-65. PubMed ID: 27818039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purinergic signalling in a latent stem cell niche of the rat spinal cord.
    Marichal N; Fabbiani G; Trujillo-Cenóz O; Russo RE
    Purinergic Signal; 2016 Jun; 12(2):331-41. PubMed ID: 26988236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells in the adult human spinal cord ependymal region do not proliferate after injury.
    Paniagua-Torija B; Norenberg M; Arevalo-Martin A; Carballosa-Gautam MM; Campos-Martin Y; Molina-Holgado E; Garcia-Ovejero D
    J Pathol; 2018 Dec; 246(4):415-421. PubMed ID: 30091291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.
    Mothe AJ; Tator CH
    Neuroscience; 2005; 131(1):177-87. PubMed ID: 15680701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ependymal cells in the spinal cord as neuronal progenitors.
    Moreno-Manzano V
    Curr Opin Pharmacol; 2020 Feb; 50():82-87. PubMed ID: 31901616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease.
    Finkel Z; Esteban F; Rodriguez B; Fu T; Ai X; Cai L
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration.
    Dervan AG; Roberts BL
    J Comp Neurol; 2003 Apr; 458(3):293-306. PubMed ID: 12619082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.