BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 29205176)

  • 1. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization.
    Ghazavi A; Cogan SF
    J Neural Eng; 2018 Jun; 15(3):036023. PubMed ID: 29205176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
    Weiland JD; Anderson DJ; Humayun MS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Material.
    Patel YA; Kim BS; Butera RJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):11-17. PubMed ID: 28809704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation.
    Hudak EM; Kumsa DW; Martin HB; Mortimer JT
    J Neural Eng; 2017 Aug; 14(4):046012. PubMed ID: 28345534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation.
    Blau A; Ziegler C; Heyer M; Endres F; Schwitzgebel G; Matthies T; Stieglitz T; Meyer JU; Göpel W
    Biosens Bioelectron; 1997; 12(9-10):883-92. PubMed ID: 9451781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the effective area and charge density of platinum electrodes for bionic devices.
    Harris AR; Newbold C; Carter P; Cowan R; Wallace GG
    J Neural Eng; 2018 Aug; 15(4):046015. PubMed ID: 29595147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of electrode materials for the use of retinal prosthesis.
    Onnela N; Takeshita H; Kaiho Y; Kojima T; Kobayashi R; Tanaka T; Hyttinen J
    Biomed Mater Eng; 2011; 21(2):83-97. PubMed ID: 21654065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of waveform shape and electrode material on KiloHertz frequency alternating current block of mammalian peripheral nerve.
    Green DB; Kilgore JA; Bender SA; Daniels RJ; Gunzler DD; Vrabec TL; Bhadra N
    Bioelectron Med; 2022 Jul; 8(1):11. PubMed ID: 35883133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the electrode-electrolyte interface for recording and stimulating electrodes.
    Troy JB; Cantrell DR; Taflove A; Ruoff RS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():879-81. PubMed ID: 17945606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes.
    Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():882-5. PubMed ID: 17946868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Surface Area.
    Patel YA; Kim BS; Rountree WS; Butera RJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1906-1916. PubMed ID: 28328507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes.
    Cantrell DR; Inayat S; Taflove A; Ruoff RS; Troy JB
    J Neural Eng; 2008 Mar; 5(1):54-67. PubMed ID: 18310811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic electrical stimulation of the auditory nerve using high surface area (HiQ) platinum electrodes.
    Tykocinski M; Duan Y; Tabor B; Cowan RS
    Hear Res; 2001 Sep; 159(1-2):53-68. PubMed ID: 11520634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1612-4. PubMed ID: 16189975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study.
    Dalrymple AN; Huynh M; Robles UA; Marroquin JB; Lee CD; Petrossians A; Whalen JJ; Li D; Parkington HC; Forsythe JS; Green RA; Poole-Warren LA; Shepherd RK; Fallon JB
    J Neural Eng; 2019 Dec; 17(1):016015. PubMed ID: 31652427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Offset prediction for charge-balanced stimulus waveforms.
    Woods VM; Triantis IF; Toumazou C
    J Neural Eng; 2011 Aug; 8(4):046032. PubMed ID: 21753229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer.
    Wang K; Liu CC; Durand DM
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):6-14. PubMed ID: 19224713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area.
    Harris AR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.