BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29205425)

  • 1. A weighted combined effect measure for the analysis of a composite time-to-first-event endpoint with components of different clinical relevance.
    Rauch G; Kunzmann K; Kieser M; Wegscheider K; König J; Eulenburg C
    Stat Med; 2018 Feb; 37(5):749-767. PubMed ID: 29205425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing a new estimator and test for the weighted all-cause hazard ratio.
    Ozga AK; Rauch G
    BMC Med Res Methodol; 2019 Jun; 19(1):118. PubMed ID: 31185922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Average Hazard Ratio - A Good Effect Measure for Time-to-event Endpoints when the Proportional Hazard Assumption is Violated?
    Rauch G; Brannath W; Brückner M; Kieser M
    Methods Inf Med; 2018 May; 57(3):89-100. PubMed ID: 29719915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted composite time to event endpoints with recurrent events: comparison of three analytical approaches.
    Ozga AK; Rauch G
    BMC Med Res Methodol; 2022 Feb; 22(1):38. PubMed ID: 35123397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of weighted composite compared to traditional composite endpoints for the design of randomized controlled trials.
    Bakal JA; Westerhout CM; Armstrong PW
    Stat Methods Med Res; 2015 Dec; 24(6):980-8. PubMed ID: 22275378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Easily applicable multiple testing procedures to improve the interpretation of clinical trials with composite endpoints.
    Schüler S; Mucha A; Doherty P; Kieser M; Rauch G
    Int J Cardiol; 2014 Jul; 175(1):126-32. PubMed ID: 24861257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic comparison of recurrent event models for application to composite endpoints.
    Ozga AK; Kieser M; Rauch G
    BMC Med Res Methodol; 2018 Jan; 18(1):2. PubMed ID: 29301487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planning and evaluating clinical trials with composite time-to-first-event endpoints in a competing risk framework.
    Rauch G; Beyersmann J
    Stat Med; 2013 Sep; 32(21):3595-608. PubMed ID: 23553898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the geometric average hazard ratio in sample size calculation for time-to-event data with composite endpoints.
    Cortés Martínez J; Geskus RB; Kim K; Melis GG
    BMC Med Res Methodol; 2021 May; 21(1):99. PubMed ID: 33957892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation study comparing the power of nine tests of the treatment effect in randomized controlled trials with a time-to-event outcome.
    Royston P; B Parmar MK
    Trials; 2020 Apr; 21(1):315. PubMed ID: 32252820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities and challenges of combined effect measures based on prioritized outcomes.
    Rauch G; Jahn-Eimermacher A; Brannath W; Kieser M
    Stat Med; 2014 Mar; 33(7):1104-20. PubMed ID: 24122841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing multiplicity issues of a composite endpoint and its components in clinical trials.
    Huque MF; Alosh M; Bhore R
    J Biopharm Stat; 2011 Jul; 21(4):610-34. PubMed ID: 21516560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo approach for change-point detection in the Cox proportional hazards model.
    Liu M; Lu W; Shao Y
    Stat Med; 2008 Aug; 27(19):3894-909. PubMed ID: 18254131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Win ratio approach for analyzing composite time-to-event endpoint with opposite treatment effects in its components.
    Liao R; Chakladar S; Gamalo M
    Pharm Stat; 2022 Nov; 21(6):1342-1356. PubMed ID: 35766113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A win ratio approach to the re-analysis of Multiple Risk Factor Intervention Trial.
    Kotalik A; Eaton A; Lian Q; Serrano C; Connett J; Neaton JD
    Clin Trials; 2019 Dec; 16(6):626-634. PubMed ID: 31389723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian design and analysis of composite endpoints in clinical trials with multiple dependent binary outcomes.
    Zaslavsky BG
    Pharm Stat; 2013; 12(4):207-12. PubMed ID: 23625660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of composite binary endpoints in clinical trials.
    Bofill Roig M; Gómez Melis G
    Biom J; 2018 Mar; 60(2):246-261. PubMed ID: 29023990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hazard ratio inference in stratified clinical trials with time-to-event endpoints and limited sample size.
    Xu R; Mehrotra DV; Shaw PA
    Pharm Stat; 2019 May; 18(3):366-376. PubMed ID: 30706642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-to-first-event versus recurrent-event analysis: points to consider for selecting a meaningful analysis strategy in clinical trials with composite endpoints.
    Rauch G; Kieser M; Binder H; Bayes-Genis A; Jahn-Eimermacher A
    Clin Res Cardiol; 2018 May; 107(5):437-443. PubMed ID: 29453594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competing time-to-event endpoints in cardiology trials: a simulation study to illustrate the importance of an adequate statistical analysis.
    Rauch G; Kieser M; Ulrich S; Doherty P; Rauch B; Schneider S; Riemer T; Senges J
    Eur J Prev Cardiol; 2014 Jan; 21(1):74-80. PubMed ID: 22964966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.