These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 29205575)
1. Panchromatic Photosensitizers Based on Push-Pull, Unsymmetrically Substituted Porphyrazines. Fernández-Ariza J; Urbani M; Rodríguez-Morgade MS; Torres T Chemistry; 2018 Feb; 24(11):2618-2625. PubMed ID: 29205575 [TBL] [Abstract][Full Text] [Related]
2. Tuning the Acceptor Unit of Push-Pull Porphyrazines for Dye-Sensitized Solar Cells. Medina DP; Fernández-Ariza J; Urbani M; Sauvage F; Torres T; Rodríguez-Morgade MS Molecules; 2021 Apr; 26(8):. PubMed ID: 33917225 [TBL] [Abstract][Full Text] [Related]
3. Tetraaryl ZnII porphyrinates substituted at β-pyrrolic positions as sensitizers in dye-sensitized solar cells: a comparison with meso-disubstituted push-pull Zn(II) porphyrinates. Di Carlo G; Orbelli Biroli A; Pizzotti M; Tessore F; Trifiletti V; Ruffo R; Abbotto A; Amat A; De Angelis F; Mussini PR Chemistry; 2013 Aug; 19(32):10723-40. PubMed ID: 23794212 [TBL] [Abstract][Full Text] [Related]
4. Non-symmetrical aryl- and arylethynyl-substituted thioalkyl-porphyrazines for optoelectronic materials: synthesis, properties, and computational studies. Belviso S; Amati M; Rossano R; Crispini A; Lelj F Dalton Trans; 2015 Feb; 44(5):2191-207. PubMed ID: 25515497 [TBL] [Abstract][Full Text] [Related]
5. Low-Symmetry Ω-Shaped Zinc Phthalocyanine Sensitizers with Panchromatic Light-Harvesting Properties for Dye-Sensitized Solar Cells. Yamamoto S; Zhang A; Stillman MJ; Kobayashi N; Kimura M Chemistry; 2016 Dec; 22(52):18760-18768. PubMed ID: 27723139 [TBL] [Abstract][Full Text] [Related]
6. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Kivala M; Diederich F Acc Chem Res; 2009 Feb; 42(2):235-48. PubMed ID: 19061332 [TBL] [Abstract][Full Text] [Related]
7. Panchromatic push-pull chromophores based on triphenylamine as donors for molecular solar cells. Esteban SG; de la Cruz P; Aljarilla A; Arellano LM; Langa F Org Lett; 2011 Oct; 13(19):5362-5. PubMed ID: 21913659 [TBL] [Abstract][Full Text] [Related]
9. Triarylamine-substituted imidazole- and quinoxaline-fused push-pull porphyrins for dye-sensitized solar cells. Hayashi H; Touchy AS; Kinjo Y; Kurotobi K; Toude Y; Ito S; Saarenpää H; Tkachenko NV; Lemmetyinen H; Imahori H ChemSusChem; 2013 Mar; 6(3):508-17. PubMed ID: 23401121 [TBL] [Abstract][Full Text] [Related]
10. Electronic and optical properties of dye-sensitized TiO₂ interfaces. Pastore M; Selloni A; Fantacci S; De Angelis F Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437 [TBL] [Abstract][Full Text] [Related]
11. Porphyrin sensitizers with π-extended pull units for dye-sensitized solar cells. Reddy NM; Pan TY; Rajan YC; Guo BC; Lan CM; Diau EW; Yeh CY Phys Chem Chem Phys; 2013 Jun; 15(21):8409-15. PubMed ID: 23629055 [TBL] [Abstract][Full Text] [Related]
12. Investigation of Structural and Optical Properties of Some [1,4]Dithiine-porphyrazine Dyes. Ali OAA; Abdel-Razik HH; Abualnaja M; Fayad E Molecules; 2022 Mar; 27(5):. PubMed ID: 35268750 [TBL] [Abstract][Full Text] [Related]
13. Fine-tuning of triarylamine-based photosensitizers for dye-sensitized solar cells. Olivier C; Sauvage F; Ducasse L; Castet F; Grätzel M; Toupance T ChemSusChem; 2011 Jun; 4(6):731-6. PubMed ID: 21591270 [TBL] [Abstract][Full Text] [Related]
15. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells. Weidelener M; Powar S; Kast H; Yu Z; Boix PP; Li C; Müllen K; Geiger T; Kuster S; Nüesch F; Bach U; Mishra A; Bäuerle P Chem Asian J; 2014 Nov; 9(11):3251-63. PubMed ID: 25234556 [TBL] [Abstract][Full Text] [Related]
17. Potential aluminium(III)- and gallium(III)-selective optical sensors based on porphyrazines. Goslinski T; Tykarska E; Kryjewski M; Osmalek T; Sobiak S; Gdaniec M; Dutkiewicz Z; Mielcarek J Anal Sci; 2011; 27(5):511. PubMed ID: 21558658 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the push-pull effects on β-functionalized benzoporphyrins bearing an ethynylphenyl bridge. Waruna Jinadasa RG; Thomas MB; Hu Y; D'Souza F; Wang H Phys Chem Chem Phys; 2017 May; 19(20):13182-13188. PubMed ID: 28489116 [TBL] [Abstract][Full Text] [Related]
19. Toward panchromatic organic functional molecules: density functional theory study on the nature of the broad UV-Vis-NIR spectra of substituted tetra(azulene)porphyrins. Qi D; Zhang L; Jiang J J Mol Graph Model; 2012 Sep; 38():304-13. PubMed ID: 23085169 [TBL] [Abstract][Full Text] [Related]
20. Two-electron reduction of alkyl(sulfanyl)porphyrazines: a route to free-base and peripherally metallated asymmetric porphyrazines. Belviso S; Giugliano A; Amati M; Ricciardi G; Lelj F; Scolaro LM Dalton Trans; 2004 Jan; (2):305-12. PubMed ID: 15356728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]