These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29205708)

  • 21. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling.
    Mulder CL; Reusswig PD; Velázquez AM; Kim H; Rotschild C; Baldo MA
    Opt Express; 2010 Apr; 18 Suppl 1():A79-90. PubMed ID: 20588577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photo-Thermo-Electric Conversion.
    Fu K; Zeng X; Zhao X; Wu Y; Li M; Li XS; Pan C; Chen Z; Yu ZQ
    Small; 2021 Oct; 17(39):e2103172. PubMed ID: 34310041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2017 Aug; 18(8):2594-2609. PubMed ID: 28699735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers.
    Gutierrez GD; Coropceanu I; Bawendi MG; Swager TM
    Adv Mater; 2016 Jan; 28(3):497-501. PubMed ID: 26596854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatially Resolved Optical Efficiency Measurements of Luminescent Solar Concentrators.
    Baikie TK; Xiao J; Drummond BH; Greenham NC; Rao A
    ACS Photonics; 2023 Aug; 10(8):2886-2893. PubMed ID: 37602294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter.
    Banal JL; Ghiggino KP; Wong WW
    Phys Chem Chem Phys; 2014 Dec; 16(46):25358-63. PubMed ID: 25338164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Efficient Luminescent Solar Concentrators Based on Benzoheterodiazole Dyes with Large Stokes Shifts.
    Gao S; Balan B; Yoosaf K; Monti F; Bandini E; Barbieri A; Armaroli N
    Chemistry; 2020 Aug; 26(48):11013-11023. PubMed ID: 32301186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and Spectroscopic Characterization of Thienopyrazine-Based Fluorophores for Application in Luminescent Solar Concentrators (LSCs).
    Yzeiri X; Calamante M; Dessì A; Franchi D; Pucci A; Ventura F; Reginato G; Zani L; Mordini A
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum-Cutting Luminescent Solar Concentrators Using Ytterbium-Doped Perovskite Nanocrystals.
    Luo X; Ding T; Liu X; Liu Y; Wu K
    Nano Lett; 2019 Jan; 19(1):338-341. PubMed ID: 30525678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amphiphilic Fluorescence Resonance Energy-Transfer Dyes: Synthesis, Fluorescence, and Aggregation Behavior in Water.
    Dou S; Wang Y; Zhang X
    Chemistry; 2020 Sep; 26(50):11503-11510. PubMed ID: 32118329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives.
    Dubey RK; Inan D; Sengupta S; Sudhölter EJR; Grozema FC; Jager WF
    Chem Sci; 2016 Jun; 7(6):3517-3532. PubMed ID: 29997844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noise-induced Förster resonant energy transfer between orthogonal dipoles in photoexcited molecules.
    Nalbach P; Pugliesi I; Langhals H; Thorwart M
    Phys Rev Lett; 2012 May; 108(21):218302. PubMed ID: 23003309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes.
    Kashida H; Takatsu T; Sekiguchi K; Asanuma H
    Chemistry; 2010 Feb; 16(8):2479-86. PubMed ID: 20066689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Fluorescent Pyridinium Betaines for Light Harvesting.
    Xu J; Zhang B; Jansen M; Goerigk L; Wong WWH; Ritchie C
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13882-13886. PubMed ID: 28695638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoconductive Core-Shell Liquid-Crystals of a Perylene Bisimide J-Aggregate Donor-Acceptor Dyad.
    Hecht M; Schlossarek T; Stolte M; Lehmann M; Würthner F
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):12979-12983. PubMed ID: 31246352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-Oxidation Agents to Prevent Dye Degradation in Organic-Based Host-Guest Systems Suitable for Luminescent Solar Concentrators.
    Villafiorita-Monteleone F; Pasini M; Botta C
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mn-Doped Multiple Quantum Well Perovskites for Efficient Large-Area Luminescent Solar Concentrators.
    Wei T; Lian K; Tao J; Zhang H; Xu D; Han J; Fan C; Zhang Z; Bi W; Sun C
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44572-44580. PubMed ID: 36125906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence quenching in an organic donor-acceptor dyad: a first principles study.
    Körzdörfer T; Tretiak S; Kümmel S
    J Chem Phys; 2009 Jul; 131(3):034310. PubMed ID: 19624200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators.
    Kaysir MR; Fleming S; Argyros A
    Appl Opt; 2018 Apr; 57(10):2459-2466. PubMed ID: 29714228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.