These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 29205741)
1. Standoff Mid-Infrared Emissive Imaging Spectroscopy for Identification and Mapping of Materials in Polychrome Objects. Gabrieli F; Dooley KA; Zeibel JG; Howe JD; Delaney JK Angew Chem Int Ed Engl; 2018 Jun; 57(25):7341-7345. PubMed ID: 29205741 [TBL] [Abstract][Full Text] [Related]
2. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Dooley KA; Lomax S; Zeibel JG; Miliani C; Ricciardi P; Hoenigswald A; Loew M; Delaney JK Analyst; 2013 Sep; 138(17):4838-48. PubMed ID: 23799233 [TBL] [Abstract][Full Text] [Related]
3. Acquisition of High Spectral Resolution Diffuse Reflectance Image Cubes (350-2500 nm) from Archaeological Wall Paintings and Other Immovable Heritage Using a Field-Deployable Spatial Scanning Reflectance Spectrometry Hyperspectral System. Radpour R; Delaney JK; Kakoulli I Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271062 [TBL] [Abstract][Full Text] [Related]
4. Near-UV to mid-IR reflectance imaging spectroscopy of paintings on the macroscale. Gabrieli F; Dooley KA; Facini M; Delaney JK Sci Adv; 2019 Aug; 5(8):eaaw7794. PubMed ID: 31467975 [TBL] [Abstract][Full Text] [Related]
5. Influence of composition and roughness on the pigment mapping of paintings using mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) and multivariate calibration. Sessa C; Bagán H; García JF Anal Bioanal Chem; 2014 Oct; 406(26):6735-47. PubMed ID: 25163587 [TBL] [Abstract][Full Text] [Related]
6. Novel Probe for Thermally Controlled Raman Spectroscopy Using Online IR Sensing and Emissivity Measurements. Calvagna C; Mencaglia AA; Osticioli I; Ciofini D; Siano S Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408294 [TBL] [Abstract][Full Text] [Related]
7. Reflectance Imaging Spectroscopy (RIS) for Gabrieli F; Delaney JK; Erdmann RG; Gonzalez V; van Loon A; Smulders P; Berkeveld R; van Langh R; Keune K Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696068 [TBL] [Abstract][Full Text] [Related]
8. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Cucci C; Delaney JK; Picollo M Acc Chem Res; 2016 Oct; 49(10):2070-2079. PubMed ID: 27677864 [TBL] [Abstract][Full Text] [Related]
9. Fiber-optic fourier transform mid-infrared reflectance spectroscopy: a suitable technique for in situ studies of mural paintings. Miliani C; Rosi F; Borgia I; Benedetti P; Brunetti BG; Sgamellotti A Appl Spectrosc; 2007 Mar; 61(3):293-9. PubMed ID: 17389069 [TBL] [Abstract][Full Text] [Related]
10. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Monico L; Rosi F; Miliani C; Daveri A; Brunetti BG Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():270-80. PubMed ID: 23954542 [TBL] [Abstract][Full Text] [Related]
11. ATR-FT-IR spectroscopy in the region of 550-230 cm(-1) for identification of inorganic pigments. Vahur S; Teearu A; Leito I Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):1061-72. PubMed ID: 20061180 [TBL] [Abstract][Full Text] [Related]
12. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers. Kilgus J; Duswald K; Langer G; Brandstetter M Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925 [TBL] [Abstract][Full Text] [Related]
13. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Prati S; Joseph E; Sciutto G; Mazzeo R Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733 [TBL] [Abstract][Full Text] [Related]
14. Complementary standoff chemical imaging to map and identify artist materials in an early Italian Renaissance panel painting. Dooley KA; Conover DM; Glinsman LD; Delaney JK Angew Chem Int Ed Engl; 2014 Dec; 53(50):13775-9. PubMed ID: 25319091 [TBL] [Abstract][Full Text] [Related]
15. Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy. Rosi F; Federici A; Brunetti BG; Sgamellotti A; Clementi S; Miliani C Anal Bioanal Chem; 2011 Mar; 399(9):3133-45. PubMed ID: 20936268 [TBL] [Abstract][Full Text] [Related]
16. Surface temperature correction for active infrared reflectance measurements of natural materials. Snyder WC; Wan Z Appl Opt; 1996 May; 35(13):2216-20. PubMed ID: 21085353 [TBL] [Abstract][Full Text] [Related]
17. Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage. Salvadó N; Butí S; Tobin MJ; Pantos E; Prag AJ; Pradell T Anal Chem; 2005 Jun; 77(11):3444-51. PubMed ID: 15924374 [TBL] [Abstract][Full Text] [Related]
19. Spectral Considerations for Standoff Infrared Detection of RDX on Reflective Aluminum. Major KJ; Sanghera JS; Farrell ME; Holthoff E; Pellegrino PM; Ewing KJ Appl Spectrosc; 2022 Feb; 76(2):163-172. PubMed ID: 34643139 [TBL] [Abstract][Full Text] [Related]
20. Applying Hyperspectral Reflectance Imaging to Investigate the Palettes and the Techniques of Painters. Caccia M; Caglio S; Galli A; Interlenghi M; Castiglioni I; Martini M J Vis Exp; 2021 Jun; (172):. PubMed ID: 34223834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]