These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
634 related articles for article (PubMed ID: 29205750)
1. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Fortunato CS; Larson B; Butterfield DA; Huber JA Environ Microbiol; 2018 Feb; 20(2):769-784. PubMed ID: 29205750 [TBL] [Abstract][Full Text] [Related]
2. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879 [TBL] [Abstract][Full Text] [Related]
3. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. Anantharaman K; Breier JA; Dick GJ ISME J; 2016 Jan; 10(1):225-39. PubMed ID: 26046257 [TBL] [Abstract][Full Text] [Related]
4. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. Fortunato CS; Huber JA ISME J; 2016 Aug; 10(8):1925-38. PubMed ID: 26872039 [TBL] [Abstract][Full Text] [Related]
5. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. Zhou Z; St John E; Anantharaman K; Reysenbach AL Microbiome; 2022 Dec; 10(1):241. PubMed ID: 36572924 [TBL] [Abstract][Full Text] [Related]
6. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. Lesniewski RA; Jain S; Anantharaman K; Schloss PD; Dick GJ ISME J; 2012 Dec; 6(12):2257-68. PubMed ID: 22695860 [TBL] [Abstract][Full Text] [Related]
7. Seafloor Incubation Experiment with Deep-Sea Hydrothermal Vent Fluid Reveals Effect of Pressure and Lag Time on Autotrophic Microbial Communities. Fortunato CS; Butterfield DA; Larson B; Lawrence-Slavas N; Algar CK; Zeigler Allen L; Holden JF; Proskurowski G; Reddington E; Stewart LC; Topçuoğlu BD; Vallino JJ; Huber JA Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608294 [TBL] [Abstract][Full Text] [Related]
8. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system. Anderson RE; Beltrán MT; Hallam SJ; Baross JA FEMS Microbiol Ecol; 2013 Feb; 83(2):324-39. PubMed ID: 22928928 [TBL] [Abstract][Full Text] [Related]
9. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions. He T; Li H; Zhang X mBio; 2017 Jul; 8(4):. PubMed ID: 28698277 [TBL] [Abstract][Full Text] [Related]
10. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Galambos D; Anderson RE; Reveillaud J; Huber JA Environ Microbiol; 2019 Nov; 21(11):4395-4410. PubMed ID: 31573126 [TBL] [Abstract][Full Text] [Related]
11. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Hu SK; Herrera EL; Smith AR; Pachiadaki MG; Edgcomb VP; Sylva SP; Chan EW; Seewald JS; German CR; Huber JA Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34266956 [TBL] [Abstract][Full Text] [Related]
13. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Dombrowski N; Seitz KW; Teske AP; Baker BJ Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260 [TBL] [Abstract][Full Text] [Related]
14. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge. Zhang L; Kang M; Xu J; Xu J; Shuai Y; Zhou X; Yang Z; Ma K Sci Rep; 2016 May; 6():25982. PubMed ID: 27169490 [TBL] [Abstract][Full Text] [Related]
15. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Flores GE; Campbell JH; Kirshtein JD; Meneghin J; Podar M; Steinberg JI; Seewald JS; Tivey MK; Voytek MA; Yang ZK; Reysenbach AL Environ Microbiol; 2011 Aug; 13(8):2158-71. PubMed ID: 21418499 [TBL] [Abstract][Full Text] [Related]
16. Metabolic Potential of As-yet-uncultured Archaeal Lineages of Candidatus Hydrothermarchaeota Thriving in Deep-sea Metal Sulfide Deposits. Kato S; Nakano S; Kouduka M; Hirai M; Suzuki K; Itoh T; Ohkuma M; Suzuki Y Microbes Environ; 2019 Sep; 34(3):293-303. PubMed ID: 31378759 [TBL] [Abstract][Full Text] [Related]
17. Sediment Microbial Diversity of Three Deep-Sea Hydrothermal Vents Southwest of the Azores. Cerqueira T; Pinho D; Froufe H; Santos RS; Bettencourt R; Egas C Microb Ecol; 2017 Aug; 74(2):332-349. PubMed ID: 28144700 [TBL] [Abstract][Full Text] [Related]
18. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
19. Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. Stewart LC; Algar CK; Fortunato CS; Larson BI; Vallino JJ; Huber JA; Butterfield DA; Holden JF ISME J; 2019 Jul; 13(7):1711-1721. PubMed ID: 30842565 [TBL] [Abstract][Full Text] [Related]
20. Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents. Hu SK; Smith AR; Anderson RE; Sylva SP; Setzer M; Steadmon M; Frank KL; Chan EW; Lim DSS; German CR; Breier JA; Lang SQ; Butterfield DA; Fortunato CS; Seewald JS; Huber JA Mol Ecol; 2023 Dec; 32(23):6580-6598. PubMed ID: 36302092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]