BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 29205771)

  • 1. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus.
    Hurgobin B; Golicz AA; Bayer PE; Chan CK; Tirnaz S; Dolatabadian A; Schiessl SV; Samans B; Montenegro JD; Parkin IAP; Pires JC; Chalhoub B; King GJ; Snowdon R; Batley J; Edwards D
    Plant Biotechnol J; 2018 Jul; 16(7):1265-1274. PubMed ID: 29205771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker.
    Fopa Fomeju B; Falentin C; Lassalle G; Manzanares-Dauleux MJ; Delourme R
    BMC Genomics; 2014 Jun; 15(1):498. PubMed ID: 24948032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus.
    Stein A; Coriton O; Rousseau-Gueutin M; Samans B; Schiessl SV; Obermeier C; Parkin IAP; Chèvre AM; Snowdon RJ
    Plant Biotechnol J; 2017 Nov; 15(11):1478-1489. PubMed ID: 28370938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype.
    Sun F; Fan G; Hu Q; Zhou Y; Guan M; Tong C; Li J; Du D; Qi C; Jiang L; Liu W; Huang S; Chen W; Yu J; Mei D; Meng J; Zeng P; Shi J; Liu K; Wang X; Wang X; Long Y; Liang X; Hu Z; Huang G; Dong C; Zhang H; Li J; Zhang Y; Li L; Shi C; Wang J; Lee SM; Guan C; Xu X; Liu S; Liu X; Chalhoub B; Hua W; Wang H
    Plant J; 2017 Nov; 92(3):452-468. PubMed ID: 28849613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting
    Higgins EE; Clarke WE; Howell EC; Armstrong SJ; Parkin IAP
    G3 (Bethesda); 2018 Jul; 8(8):2673-2683. PubMed ID: 29907649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids.
    Bayer PE; Scheben A; Golicz AA; Yuan Y; Faure S; Lee H; Chawla HS; Anderson R; Bancroft I; Raman H; Lim YP; Robbens S; Jiang L; Liu S; Barker MS; Schranz ME; Wang X; King GJ; Pires JC; Chalhoub B; Snowdon RJ; Batley J; Edwards D
    Plant Biotechnol J; 2021 Dec; 19(12):2488-2500. PubMed ID: 34310022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop.
    Lloyd A; Blary A; Charif D; Charpentier C; Tran J; Balzergue S; Delannoy E; Rigaill G; Jenczewski E
    New Phytol; 2018 Jan; 217(1):367-377. PubMed ID: 29034956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.
    Dalton-Morgan J; Hayward A; Alamery S; Tollenaere R; Mason AS; Campbell E; Patel D; Lorenc MT; Yi B; Long Y; Meng J; Raman R; Raman H; Lawley C; Edwards D; Batley J
    Funct Integr Genomics; 2014 Dec; 14(4):643-55. PubMed ID: 25147024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus.
    Sochorová J; Coriton O; Kuderová A; Lunerová J; Chèvre AM; Kovařík A
    Ann Bot; 2017 Jan; 119(1):13-26. PubMed ID: 27707747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation.
    Dolatabadian A; Bayer PE; Tirnaz S; Hurgobin B; Edwards D; Batley J
    Plant Biotechnol J; 2020 Apr; 18(4):969-982. PubMed ID: 31553100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus.
    Higgins J; Magusin A; Trick M; Fraser F; Bancroft I
    BMC Genomics; 2012 Jun; 13():247. PubMed ID: 22703051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus.
    Higgins EE; Howell EC; Armstrong SJ; Parkin IAP
    New Phytol; 2021 Mar; 229(6):3281-3293. PubMed ID: 33020949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of non-specific lipid transfer protein (nsLtp) gene families in the Brassica napus pangenome reveals abundance variation.
    Liang Y; Huang Y; Chen K; Kong X; Li M
    BMC Plant Biol; 2022 Jan; 22(1):21. PubMed ID: 34996379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa.
    Zou J; Fu D; Gong H; Qian W; Xia W; Pires JC; Li R; Long Y; Mason AS; Yang TJ; Lim YP; Park BS; Meng J
    Plant J; 2011 Oct; 68(2):212-24. PubMed ID: 21689170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituting the genome of a young allopolyploid crop, Brassica napus, with its related species.
    Hu D; Zhang W; Zhang Y; Chang S; Chen L; Chen Y; Shi Y; Shen J; Meng J; Zou J
    Plant Biotechnol J; 2019 Jun; 17(6):1106-1118. PubMed ID: 30467941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative pangenome analyses provide insights into the evolution of Brassica rapa resistance gene analogues (RGAs).
    Amas JC; Bayer PE; Hong Tan W; Tirnaz S; Thomas WJW; Edwards D; Batley J
    Plant Biotechnol J; 2023 Oct; 21(10):2100-2112. PubMed ID: 37431308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus.
    Song JM; Guan Z; Hu J; Guo C; Yang Z; Wang S; Liu D; Wang B; Lu S; Zhou R; Xie WZ; Cheng Y; Zhang Y; Liu K; Yang QY; Chen LL; Guo L
    Nat Plants; 2020 Jan; 6(1):34-45. PubMed ID: 31932676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes.
    Zou J; Hu D; Liu P; Raman H; Liu Z; Liu X; Parkin IA; Chalhoub B; Meng J
    BMC Genomics; 2016 Jan; 17():18. PubMed ID: 26728943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic changes following hybridization and genome doubling in synthetic Brassica napus.
    Xu Y; Xu H; Wu X; Fang X; Wang J
    Biochem Genet; 2012 Aug; 50(7-8):616-24. PubMed ID: 22538518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.
    Zhan Z; Nwafor CC; Hou Z; Gong J; Zhu B; Jiang Y; Zhou Y; Wu J; Piao Z; Tong Y; Liu C; Zhang C
    PLoS One; 2017; 12(5):e0177470. PubMed ID: 28505203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.