These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 29205771)

  • 1. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus.
    Hurgobin B; Golicz AA; Bayer PE; Chan CK; Tirnaz S; Dolatabadian A; Schiessl SV; Samans B; Montenegro JD; Parkin IAP; Pires JC; Chalhoub B; King GJ; Snowdon R; Batley J; Edwards D
    Plant Biotechnol J; 2018 Jul; 16(7):1265-1274. PubMed ID: 29205771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker.
    Fopa Fomeju B; Falentin C; Lassalle G; Manzanares-Dauleux MJ; Delourme R
    BMC Genomics; 2014 Jun; 15(1):498. PubMed ID: 24948032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus.
    Stein A; Coriton O; Rousseau-Gueutin M; Samans B; Schiessl SV; Obermeier C; Parkin IAP; Chèvre AM; Snowdon RJ
    Plant Biotechnol J; 2017 Nov; 15(11):1478-1489. PubMed ID: 28370938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype.
    Sun F; Fan G; Hu Q; Zhou Y; Guan M; Tong C; Li J; Du D; Qi C; Jiang L; Liu W; Huang S; Chen W; Yu J; Mei D; Meng J; Zeng P; Shi J; Liu K; Wang X; Wang X; Long Y; Liang X; Hu Z; Huang G; Dong C; Zhang H; Li J; Zhang Y; Li L; Shi C; Wang J; Lee SM; Guan C; Xu X; Liu S; Liu X; Chalhoub B; Hua W; Wang H
    Plant J; 2017 Nov; 92(3):452-468. PubMed ID: 28849613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids.
    Bayer PE; Scheben A; Golicz AA; Yuan Y; Faure S; Lee H; Chawla HS; Anderson R; Bancroft I; Raman H; Lim YP; Robbens S; Jiang L; Liu S; Barker MS; Schranz ME; Wang X; King GJ; Pires JC; Chalhoub B; Snowdon RJ; Batley J; Edwards D
    Plant Biotechnol J; 2021 Dec; 19(12):2488-2500. PubMed ID: 34310022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop.
    Lloyd A; Blary A; Charif D; Charpentier C; Tran J; Balzergue S; Delannoy E; Rigaill G; Jenczewski E
    New Phytol; 2018 Jan; 217(1):367-377. PubMed ID: 29034956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.
    Dalton-Morgan J; Hayward A; Alamery S; Tollenaere R; Mason AS; Campbell E; Patel D; Lorenc MT; Yi B; Long Y; Meng J; Raman R; Raman H; Lawley C; Edwards D; Batley J
    Funct Integr Genomics; 2014 Dec; 14(4):643-55. PubMed ID: 25147024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus.
    Sochorová J; Coriton O; Kuderová A; Lunerová J; Chèvre AM; Kovařík A
    Ann Bot; 2017 Jan; 119(1):13-26. PubMed ID: 27707747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation.
    Dolatabadian A; Bayer PE; Tirnaz S; Hurgobin B; Edwards D; Batley J
    Plant Biotechnol J; 2020 Apr; 18(4):969-982. PubMed ID: 31553100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus.
    Higgins J; Magusin A; Trick M; Fraser F; Bancroft I
    BMC Genomics; 2012 Jun; 13():247. PubMed ID: 22703051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus.
    Higgins EE; Howell EC; Armstrong SJ; Parkin IAP
    New Phytol; 2021 Mar; 229(6):3281-3293. PubMed ID: 33020949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting
    Higgins EE; Clarke WE; Howell EC; Armstrong SJ; Parkin IAP
    G3 (Bethesda); 2018 Jul; 8(8):2673-2683. PubMed ID: 29907649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of non-specific lipid transfer protein (nsLtp) gene families in the Brassica napus pangenome reveals abundance variation.
    Liang Y; Huang Y; Chen K; Kong X; Li M
    BMC Plant Biol; 2022 Jan; 22(1):21. PubMed ID: 34996379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa.
    Zou J; Fu D; Gong H; Qian W; Xia W; Pires JC; Li R; Long Y; Mason AS; Yang TJ; Lim YP; Park BS; Meng J
    Plant J; 2011 Oct; 68(2):212-24. PubMed ID: 21689170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituting the genome of a young allopolyploid crop, Brassica napus, with its related species.
    Hu D; Zhang W; Zhang Y; Chang S; Chen L; Chen Y; Shi Y; Shen J; Meng J; Zou J
    Plant Biotechnol J; 2019 Jun; 17(6):1106-1118. PubMed ID: 30467941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative pangenome analyses provide insights into the evolution of Brassica rapa resistance gene analogues (RGAs).
    Amas JC; Bayer PE; Hong Tan W; Tirnaz S; Thomas WJW; Edwards D; Batley J
    Plant Biotechnol J; 2023 Oct; 21(10):2100-2112. PubMed ID: 37431308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus.
    Song JM; Guan Z; Hu J; Guo C; Yang Z; Wang S; Liu D; Wang B; Lu S; Zhou R; Xie WZ; Cheng Y; Zhang Y; Liu K; Yang QY; Chen LL; Guo L
    Nat Plants; 2020 Jan; 6(1):34-45. PubMed ID: 31932676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes.
    Zou J; Hu D; Liu P; Raman H; Liu Z; Liu X; Parkin IA; Chalhoub B; Meng J
    BMC Genomics; 2016 Jan; 17():18. PubMed ID: 26728943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic changes following hybridization and genome doubling in synthetic Brassica napus.
    Xu Y; Xu H; Wu X; Fang X; Wang J
    Biochem Genet; 2012 Aug; 50(7-8):616-24. PubMed ID: 22538518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.
    Zhan Z; Nwafor CC; Hou Z; Gong J; Zhu B; Jiang Y; Zhou Y; Wu J; Piao Z; Tong Y; Liu C; Zhang C
    PLoS One; 2017; 12(5):e0177470. PubMed ID: 28505203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.