BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29205885)

  • 1. Label-free imaging and spectroscopy for early detection of cervical cancer.
    Jing Y; Wang Y; Wang X; Song C; Ma J; Xie Y; Fei Y; Zhang Q; Mi L
    J Biophotonics; 2018 May; 11(5):e201700245. PubMed ID: 29205885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration of FAD as a marker for cervical precancer detection.
    Meena BL; Agarwal A; Pantola C; Pandey K; Pradhan A
    J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30903655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing cell metabolism by time-resolved autofluorescence.
    Wu Y; Zheng W; Qu JY
    Opt Lett; 2006 Nov; 31(21):3122-4. PubMed ID: 17041655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device.
    Meena BL; Singh P; Sah AN; Pandey K; Agarwal A; Pantola C; Pradhan A
    J Biomed Opt; 2018 Jan; 23(1):1-7. PubMed ID: 29341542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence spectroscopy as a diagnostic tool for detecting cervical pre-cancer.
    Chang SK; Pavlova I; Marín NM; Follen M; Richards-Kortum R
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S61-3. PubMed ID: 16419187
    [No Abstract]   [Full Text] [Related]  

  • 6. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free, High-Resolution Optical Metabolic Imaging of Human Cervical Precancers Reveals Potential for Intraepithelial Neoplasia Diagnosis.
    Pouli D; Thieu HT; Genega EM; Baecher-Lind L; House M; Bond B; Roncari DM; Evans ML; Rius-Diaz F; Munger K; Georgakoudi I
    Cell Rep Med; 2020 May; 1(2):. PubMed ID: 32577625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring.
    Sivabalan S; Vedeswari CP; Jayachandran S; Koteeswaran D; Pravda C; Aruna PR; Ganesan S
    J Biomed Opt; 2010; 15(1):017010. PubMed ID: 20210484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.
    Crowell E; Wang G; Cox J; Platz CP; Geng L
    Anal Chem; 2005 Mar; 77(5):1368-75. PubMed ID: 15732920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer's Disease.
    Shi L; Lu L; Harvey G; Harvey T; Rodríguez-Contreras A; Alfano RR
    Sci Rep; 2017 Jun; 7(1):2599. PubMed ID: 28572632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-channel autofluorescence analysis for oral cancer.
    Huang TT; Chen KC; Wong TY; Chen CY; Chen WC; Chen YC; Chang MH; Wu DY; Huang TY; Nioka S; Chung PC; Huang JS
    J Biomed Opt; 2018 Nov; 24(5):1-10. PubMed ID: 30411551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast.
    Conklin MW; Provenzano PP; Eliceiri KW; Sullivan R; Keely PJ
    Cell Biochem Biophys; 2009; 53(3):145-57. PubMed ID: 19259625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy.
    Wang M; Tang F; Pan X; Yao L; Wang X; Jing Y; Ma J; Wang G; Mi L
    BBA Clin; 2017 Dec; 8():7-13. PubMed ID: 28567338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free monitoring of ambient oxygenation and redox conditions using the photodynamics of flavin compounds and transient state (TRAST) spectroscopy.
    Tornmalm J; Widengren J
    Methods; 2018 May; 140-141():178-187. PubMed ID: 29179988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical redox imaging indices discriminate human breast cancer from normal tissues.
    Xu HN; Tchou J; Feng M; Zhao H; Li LZ
    J Biomed Opt; 2016 Nov; 21(11):114003. PubMed ID: 27896360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization gating technique extracts depth resolved fluorescence redox ratio in oral cancer diagnostics.
    Gnanatheepam E; Kanniyappan U; Dornadula K; Prakasarao A; Singaravelu G
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101757. PubMed ID: 32335189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy.
    Wang X; Wang Y; Zhang Z; Huang M; Fei Y; Ma J; Mi L
    Biomed Opt Express; 2020 Apr; 11(4):1977-1990. PubMed ID: 32341861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence spectra of blood and urine for cervical cancer detection.
    Masilamani V; Alsalhi MS; Vijmasi T; Govindarajan K; Rathan Rai R; Atif M; Prasad S; Aldwayyan AS
    J Biomed Opt; 2012 Sep; 17(9):98001-1. PubMed ID: 23085927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis.
    Devi S; Panigrahi PK; Pradhan A
    J Biomed Opt; 2014 Dec; 19(12):127003. PubMed ID: 25504494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.