BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29205885)

  • 21. Intrinsic fluorescence changes associated with apoptosis of human epithelial keratinocytes.
    Georgakoudi I; Levitt J; Baldwin A; Papadakis A; Münger K
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S54-7. PubMed ID: 16419185
    [No Abstract]   [Full Text] [Related]  

  • 22. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy.
    Pavlova I; Sokolov K; Drezek R; Malpica A; Follen M; Richards-Kortum R
    Photochem Photobiol; 2003 May; 77(5):550-5. PubMed ID: 12812299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alzheimer mouse brain tissue measured by time resolved fluorescence spectroscopy using single- and multi-photon excitation of label free native molecules.
    Das B; Shi L; Budansky Y; Rodriguez-Contreras A; Alfano R
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28464457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRAFT: Multimodality confocal skin imaging for early cancer diagnosis.
    Peng T; Xie H; Ding Y; Wang W; Li Z; Jin D; Tang Y; Ren Q; Xi P
    J Biophotonics; 2012 May; 5(5-6):469-76. PubMed ID: 22232081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autofluorescence patterns in short-term cultures of normal cervical tissue.
    Brookner CK; Follen M; Boiko I; Galvan J; Thomsen S; Malpica A; Suzuki S; Lotan R; Richards-Kortum R
    Photochem Photobiol; 2000 Jun; 71(6):730-6. PubMed ID: 10857369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Tang G; Alfano RR
    J Biomed Opt; 2010; 15(4):047008. PubMed ID: 20799839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response.
    Gil DA; Deming D; Skala MC
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33754540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cervical cancer detection by time-resolved spectra of blood components.
    Kalaivani R; Masilamani V; AlSalhi MS; Devanesan S; Ramamurthy P; Palled SR; Ganesh KM
    J Biomed Opt; 2014 May; 19(5):057011. PubMed ID: 24853147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods.
    Pu Y; Wang W; Yang Y; Alfano RR
    Appl Opt; 2013 Feb; 52(6):1293-301. PubMed ID: 23435002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Special Issue on Metabolism Cytometry A.
    Periasamy A
    Cytometry A; 2019 Jan; 95(1):10-12. PubMed ID: 30633456
    [No Abstract]   [Full Text] [Related]  

  • 31. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine.
    Atif M; AlSalhi MS; Devanesan S; Masilamani V; Farhat K; Rabah D
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():40-44. PubMed ID: 29800712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.
    Duraipandian S; Zheng W; Ng J; Low JJ; Ilancheran A; Huang Z
    Anal Chem; 2012 Jul; 84(14):5913-9. PubMed ID: 22724621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and diagnosis of cancer by native fluorescence spectroscopy of human urine.
    Rajasekaran R; Aruna PR; Koteeswaran D; Padmanabhan L; Muthuvelu K; Rai RR; Thamilkumar P; Murali Krishna C; Ganesan S
    Photochem Photobiol; 2013; 89(2):483-91. PubMed ID: 22971002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Information entropy of quantitative chemometric endogenous fluorescence improves photonic lung cancer diagnosis.
    Xu Z; Xie X; Li R; Yu K; Lish SR; Xu M
    Appl Opt; 2022 Jan; 61(2):478-484. PubMed ID: 35200886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput measurements of the optical redox ratio using a commercial microplate reader.
    Cannon TM; Shah AT; Walsh AJ; Skala MC
    J Biomed Opt; 2015 Jan; 20(1):010503. PubMed ID: 25634108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early Detection of Cervical Cancer by Fluorescence Lifetime Imaging Microscopy Combined with Unsupervised Machine Learning.
    Ji M; Zhong J; Xue R; Su W; Kong Y; Fei Y; Ma J; Wang Y; Mi L
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autofluorescence spectroscopy in redox monitoring across cell confluencies.
    Yong D; Abdul Rahim AA; Thwin CS; Chen S; Zhai W; Win Naing M
    PLoS One; 2019; 14(12):e0226757. PubMed ID: 31851724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.