These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29206111)

  • 1. Optical proximity correction (OPC) in near-field lithography with pixel-based field sectioning time modulation.
    Oh S; Han D; Shim HB; Hahn JW
    Nanotechnology; 2018 Jan; 29(4):045301. PubMed ID: 29206111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation.
    Han D; Deng S; Ye T; Wei Y
    Microsyst Nanoeng; 2023; 9():40. PubMed ID: 37007604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical proximity correction of hot-spot patterns with subwavelength size in DMD maskless projection lithography.
    Guo X; Chen JT; Zhao YY; Cai SC; Duan XM
    Opt Lett; 2024 Feb; 49(4):810-813. PubMed ID: 38359188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic algorithm-based optical proximity correction for DMD maskless lithography.
    Yang Z; Lin J; Liu L; Zhu Z; Zhang R; Wen S; Yin Y; Lan C; Li C; Liu Y
    Opt Express; 2023 Jul; 31(14):23598-23607. PubMed ID: 37475440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast optical proximity correction method based on nonlinear compressive sensing.
    Ma X; Wang Z; Li Y; Arce GR; Dong L; Garcia-Frias J
    Opt Express; 2018 May; 26(11):14479-14498. PubMed ID: 29877485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pixel-based OPC optimization based on conjugate gradients.
    Ma X; Arce GR
    Opt Express; 2011 Jan; 19(3):2165-80. PubMed ID: 21369034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity modulation based optical proximity optimization for the maskless lithography.
    Liu J; Liu J; Deng Q; Feng J; Zhou S; Hu S
    Opt Express; 2020 Jan; 28(1):548-557. PubMed ID: 32118980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging.
    Wang Y; Du Z; Park Y; Chen C; Zhang X; Pan L
    Opt Lett; 2015 Aug; 40(16):3918-21. PubMed ID: 26274694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient optical proximity correction based on virtual edge and mask pixelation with two-phase sampling.
    Chen G; Li S; Wang X
    Opt Express; 2021 May; 29(11):17440-17463. PubMed ID: 34154287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography.
    Ma X; Arce GR
    Opt Express; 2009 Mar; 17(7):5783-93. PubMed ID: 19333347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binary mask optimization for forward lithography based on the boundary layer model in coherent systems.
    Ma X; Arce GR
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jul; 26(7):1687-95. PubMed ID: 19568305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic lithography fast imaging model based on the decomposition machine learning method.
    Ding H; Liu L; Li Z; Dong L; Wei Y; Ye T
    Opt Express; 2023 Jan; 31(1):192-210. PubMed ID: 36606960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Block-based mask optimization for optical lithography.
    Ma X; Song Z; Li Y; Arce GR
    Appl Opt; 2013 May; 52(14):3351-63. PubMed ID: 23669851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved 3D OPC Method for the Fabrication of High-Fidelity Micro Fresnel Lenses.
    Peng F; Sun C; Wan H; Gui C
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information theoretical approaches in computational lithography.
    Wang Z; Ma X; Arce GR; Garcia-Frias J
    Opt Express; 2018 Jun; 26(13):16736-16751. PubMed ID: 30119496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mask optimization approaches in optical lithography based on a vector imaging model.
    Ma X; Li Y; Dong L
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1300-12. PubMed ID: 22751396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial modulation of scalable nanostructures by combining maskless plasmonic lithography and grayscale-patterned strategy.
    Han D; Ye T; Wei Y
    Nanoscale Adv; 2023 Aug; 5(17):4424-4434. PubMed ID: 37638165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized inverse lithography methods for phase-shifting mask design.
    Ma X; Arce GR
    Opt Express; 2007 Nov; 15(23):15066-79. PubMed ID: 19550790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational rule-based approach for corner correction of non-Manhattan geometries in mask aligner photolithography.
    Vetter A; Yan C; Kirner R; Scharf T; Noell W; Voelkel R; Rockstuhl C
    Opt Express; 2019 Oct; 27(22):32523-32535. PubMed ID: 31684463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal.
    Kim Y; Jung H; Kim S; Jang J; Lee JY; Hahn JW
    Opt Express; 2011 Sep; 19(20):19296-309. PubMed ID: 21996870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.