BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29206258)

  • 1. In vitro inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles.
    Jiang S; Li M; Chang R; Xiong L; Sun Q
    Food Funct; 2018 Jan; 9(1):355-363. PubMed ID: 29206258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on the Influences of Five Food-Borne Polyphenols on
    Ren S; Li K; Liu Z
    J Agric Food Chem; 2019 Aug; 67(31):8617-8625. PubMed ID: 31293160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity.
    Sun L; Gidley MJ; Warren FJ
    Food Chem; 2018 Aug; 258():164-173. PubMed ID: 29655719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α-Amylase inhibitory triterpene from Abrus precatorius leaves.
    Yonemoto R; Shimada M; Gunawan-Puteri MD; Kato E; Kawabata J
    J Agric Food Chem; 2014 Aug; 62(33):8411-4. PubMed ID: 25089582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
    Sabiu S; O'Neill FH; Ashafa AOT
    J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content.
    Ji N; Liu C; Li M; Sun Q; Xiong L
    Food Chem; 2018 Apr; 245():481-487. PubMed ID: 29287399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion.
    Miao M; Jiang B; Jiang H; Zhang T; Li X
    Food Chem; 2015 Nov; 186():20-5. PubMed ID: 25976786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of the effect of maltose on the direct binding of porcine pancreatic α-amylase to maize starch.
    Warren FJ; Butterworth PJ; Ellis PR
    Carbohydr Res; 2012 Sep; 358():67-71. PubMed ID: 22867906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase.
    Cai X; Yu J; Xu L; Liu R; Yang J
    Food Chem; 2015 May; 174():291-8. PubMed ID: 25529683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of delaying starch digestion by luteolin.
    Zhao Y; Wang M; Zhang J; Xiong C; Huang G
    Food Funct; 2021 Nov; 12(23):11862-11871. PubMed ID: 34734615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic α-amylase.
    Wang M; Shi J; Wang L; Hu Y; Ye X; Liu D; Chen J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2589-2596. PubMed ID: 30195612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics.
    D'Costa AS; Bordenave N
    Food Chem; 2021 Mar; 341(Pt 2):128256. PubMed ID: 33035827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of in vitro enzymatic starch digestion by coffee extract.
    Li X; Cai J; Yu J; Wang S; Copeland L; Wang S
    Food Chem; 2021 Oct; 358():129837. PubMed ID: 33940299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernel composition, starch structure, and enzyme digestibility of opaque-2 maize and quality protein maize.
    Hasjim J; Srichuwong S; Scott MP; Jane JL
    J Agric Food Chem; 2009 Mar; 57(5):2049-55. PubMed ID: 19206469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of functional soybean peptide-cyclodextrin carboxylate nanoparticles and their interaction with porcine pancreatic α-amylase.
    Liu Y; Li X; Sang S; Julian McClements D; Chen L; Long J; Jiao A; Wang J; Xu X; Jin Z; Qiu C
    Food Res Int; 2022 Dec; 162(Pt B):112054. PubMed ID: 36461314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism.
    Yang J; Chang R; Ge S; Zhao M; Liang C; Xiong L; Sun Q
    Food Funct; 2016 Dec; 7(12):4804-4815. PubMed ID: 27872930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.
    Say R; Şenay RH; Biçen Ö; Ersöz A; Şişman Yılmaz F; Akgöl S; Denizli A
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):1900-6. PubMed ID: 23498211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch.
    Jiang C; Chen Y; Ye X; Wang L; Shao J; Jing H; Jiang C; Wang H; Ma C
    Int J Biol Macromol; 2021 Mar; 172():503-514. PubMed ID: 33454330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic pretreatment for preparing starch nanocrystals.
    LeCorre D; Vahanian E; Dufresne A; Bras J
    Biomacromolecules; 2012 Jan; 13(1):132-7. PubMed ID: 22133316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis.
    Chen X; He X; Zhang B; Sun L; Liang Z; Huang Q
    Int J Biol Macromol; 2019 May; 129():433-441. PubMed ID: 30716375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.