These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29206471)

  • 1. Optical Forces at the Nanoscale: Size and Electrostatic Effects.
    Rodríguez-Sevilla P; Prorok K; Bednarkiewicz A; Marqués MI; García-Martín A; García Solé J; Haro-González P; Jaque D
    Nano Lett; 2018 Jan; 18(1):602-609. PubMed ID: 29206471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Manipulation and Spectroscopy Of Silicon Nanoparticles Exhibiting Dielectric Resonances.
    Andres-Arroyo A; Gupta B; Wang F; Gooding JJ; Reece PJ
    Nano Lett; 2016 Mar; 16(3):1903-10. PubMed ID: 26848883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations.
    Ortiz-Rivero E; Labrador-Páez L; Rodríguez-Sevilla P; Haro-González P
    Front Chem; 2020; 8():593398. PubMed ID: 33240853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays.
    Wang G; Han Z
    Beilstein J Nanotechnol; 2023; 14():674-682. PubMed ID: 37284552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual and Quantitative Analysis of the Trapping Volume in Dielectrophoresis of Nanoparticles.
    Zavatski S; Martin OJF
    Nano Lett; 2024 Aug; 24(33):10305-10312. PubMed ID: 39133749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity.
    Chen C; Juan ML; Li Y; Maes G; Borghs G; Van Dorpe P; Quidant R
    Nano Lett; 2012 Jan; 12(1):125-32. PubMed ID: 22136462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing optical forces on fluorescent up-converting nanoparticles by surface charge tailoring.
    Rodríguez-Rodríguez H; Rodríguez Sevilla P; Martín Rodríguez E; Ortgies DH; Pedroni M; Speghini A; Bettinelli M; Jaque D; Haro-González P
    Small; 2015 Apr; 11(13):1555-61. PubMed ID: 25451550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical forces in hybrid plasmonic waveguides.
    Yang X; Liu Y; Oulton RF; Yin X; Zhang X
    Nano Lett; 2011 Feb; 11(2):321-8. PubMed ID: 21229998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-physics simulations and experimental comparisons for the optical and electrical forces acting on a silica nanoparticle trapped by a double-nanohole plasmonic nanopore sensor.
    Asadzadeh H; Renkes S; Kim M; Alexandrakis G
    Sens Biosensing Res; 2023 Aug; 41():. PubMed ID: 39239382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical forces on metallic nanoparticles induced by a photonic nanojet.
    Cui X; Erni D; Hafner C
    Opt Express; 2008 Sep; 16(18):13560-8. PubMed ID: 18772965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes.
    Guerrero García GI; Olvera de la Cruz M
    J Phys Chem B; 2014 Jul; 118(29):8854-62. PubMed ID: 24953671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles.
    Shan X; Wang F; Wang D; Wen S; Chen C; Di X; Nie P; Liao J; Liu Y; Ding L; Reece PJ; Jin D
    Nat Nanotechnol; 2021 May; 16(5):531-537. PubMed ID: 33603239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical trapping reveals differences in dielectric and optical properties of copper nanoparticles compared to their oxides and ferrites.
    Purohit P; Samadi A; Bendix PM; Laserna JJ; Oddershede LB
    Sci Rep; 2020 Jan; 10(1):1198. PubMed ID: 31988351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of inter-particle forces on diffusion at the nanoscale.
    Giorgi F; Coglitore D; Curran JM; Gilliland D; Macko P; Whelan M; Worth A; Patterson EA
    Sci Rep; 2019 Sep; 9(1):12689. PubMed ID: 31481689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-assisted optical trapping and anti-trapping.
    Ivinskaya A; Petrov MI; Bogdanov AA; Shishkin I; Ginzburg P; Shalin AS
    Light Sci Appl; 2017 May; 6(5):e16258. PubMed ID: 30167251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of Optical Vortex Forces Acting on Au Nanoparticles Transported in Nanofluidic Channels.
    Nakajima K; Tsujimura T; Doi K; Kawano S
    ACS Omega; 2022 Jan; 7(3):2638-2648. PubMed ID: 35097262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorting Metal Nanoparticles with Dynamic and Tunable Optical Driven Forces.
    Nan F; Yan Z
    Nano Lett; 2018 Jul; 18(7):4500-4505. PubMed ID: 29939760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping forces for colloids at the oil-water interface.
    Park BJ; Furst EM
    Langmuir; 2008 Dec; 24(23):13383-92. PubMed ID: 18980357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.