These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29206471)

  • 21. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography.
    Palleau E; Sangeetha NM; Ressier L
    Nanotechnology; 2011 Aug; 22(32):325603. PubMed ID: 21772072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optomechanically induced optical trapping system based on photonic crystal cavities.
    Monterrosas-Romero M; Alavi SK; Koistinen EM; Hong S
    Opt Express; 2023 Jun; 31(12):20398-20409. PubMed ID: 37381435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.
    Ovanesyan Z; Aljzmi A; Almusaynid M; Khan A; Valderrama E; Nash KL; Marucho M
    J Colloid Interface Sci; 2016 Jan; 462():325-33. PubMed ID: 26476201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trapping and manipulating nanoparticles in photonic nanojets.
    Wang H; Wu X; Shen D
    Opt Lett; 2016 Apr; 41(7):1652-5. PubMed ID: 27192310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces.
    Fumagalli L; Esteban-Ferrer D; Cuervo A; Carrascosa JL; Gomila G
    Nat Mater; 2012 Sep; 11(9):808-16. PubMed ID: 22772654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of nanoparticle size distributions using a microfluidic device with integrated optical microcavities.
    Malmir K; Okell W; Trichet AAP; Smith JM
    Lab Chip; 2022 Sep; 22(18):3499-3507. PubMed ID: 35968777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomanipulation using silicon photonic crystal resonators.
    Mandal S; Serey X; Erickson D
    Nano Lett; 2010 Jan; 10(1):99-104. PubMed ID: 19957918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced optical force on multilayered dielectric nanoparticles by tuning material properties and nature of excitation: a theoretical investigation.
    Yadav S; Devi A; De AK
    Nanoscale Adv; 2022 Jul; 4(14):2979-2987. PubMed ID: 36133514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-optical tunable plasmonic nano-aggregations for surface-enhanced Raman scattering.
    Chen L; Liu W; Shen D; Liu Y; Zhou Z; Liang X; Wan W
    Nanoscale; 2019 Jul; 11(28):13558-13566. PubMed ID: 31290520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical forces through guided light deflections.
    Palima D; Bañas AR; Vizsnyiczai G; Kelemen L; Aabo T; Ormos P; Glückstad J
    Opt Express; 2013 Jan; 21(1):581-93. PubMed ID: 23388951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical forces on submicron particles induced by full Poincaré beams.
    Wang LG
    Opt Express; 2012 Sep; 20(19):20814-26. PubMed ID: 23037205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave.
    Zemánek P; Jonás A; Liska M
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):1025-34. PubMed ID: 11999957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles.
    Shi C; Zhang Y; Gu C; Seballos L; Zhang JZ
    Nanotechnology; 2008 May; 19(21):215304. PubMed ID: 21730571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds.
    Melzer JE; McLeod E
    ACS Nano; 2018 Mar; 12(3):2440-2447. PubMed ID: 29400940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bipolar optical forces on dielectric and metallic nanoparticles by evanescent wave.
    Xiao JJ; Zheng HH; Sun YX; Yao Y
    Opt Lett; 2010 Apr; 35(7):962-4. PubMed ID: 20364184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles.
    Burgin J; Si S; Delville MH; Delville JP
    Opt Express; 2014 May; 22(9):10139-50. PubMed ID: 24921718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.