These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29207351)

  • 21. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.
    Liang L; Yang W; Guan X; Li J; Xu Z; Wu J; Huang Y; Zhang X
    Water Res; 2013 Oct; 47(15):5846-55. PubMed ID: 23899877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media.
    Farrell J; Wang J; O'Day P; Conklin M
    Environ Sci Technol; 2001 May; 35(10):2026-32. PubMed ID: 11393984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zero-valent aluminum for reductive removal of aqueous pollutants over a wide pH range: Performance and mechanism especially at near-neutral pH.
    Yang S; Zheng D; Ren T; Zhang Y; Xin J
    Water Res; 2017 Oct; 123():704-714. PubMed ID: 28728109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron.
    Liang L; Sun W; Guan X; Huang Y; Choi W; Bao H; Li L; Jiang Z
    Water Res; 2014 Feb; 49():371-80. PubMed ID: 24199999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activating persulfate by Fe⁰ coupling with weak magnetic field: performance and mechanism.
    Xiong X; Sun B; Zhang J; Gao N; Shen J; Li J; Guan X
    Water Res; 2014 Oct; 62():53-62. PubMed ID: 24934323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples.
    Dou X; Li R; Zhao B; Liang W
    J Hazard Mater; 2010 Oct; 182(1-3):108-14. PubMed ID: 20599323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.
    Xia X; Ling L; Zhang WX
    Chemosphere; 2017 Feb; 168():1597-1603. PubMed ID: 27939658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Cr(VI) removal from groundwater by Fe
    Yin W; Li Y; Wu J; Chen G; Jiang G; Li P; Gu J; Liang H; Liu C
    J Hazard Mater; 2017 Jun; 332():42-50. PubMed ID: 28279872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the removal mechanism of Cr(VI) in groundwater using activated carbon and cast iron combined system.
    Huang D; Wang G; Li Z; Kang F; Liu F
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18341-18354. PubMed ID: 28639020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H
    Shan C; Chen J; Yang Z; Jia H; Guan X; Zhang W; Pan B
    Water Res; 2018 Apr; 133():173-181. PubMed ID: 29407699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation.
    Sun Y; Guan X; Wang J; Meng X; Xu C; Zhou G
    Environ Sci Technol; 2014 Jun; 48(12):6850-8. PubMed ID: 24870265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into iron/nickel-carbon ternary micro-electrolysis toward 4-nitrochlorobenzene removal: Enhancing reduction and unveiling removal mechanisms.
    Xiong M; Gu S; Gu H; Zhang D; Ma C; Xu Z
    J Colloid Interface Sci; 2022 Apr; 612():308-322. PubMed ID: 34998191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline.
    Wu Y; Yue Q; Gao Y; Ren Z; Gao B
    J Environ Sci (China); 2018 Jul; 69():173-182. PubMed ID: 29941253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluidized zero valent iron bed reactor for nitrate removal.
    Chen YM; Li CW; Chen SS
    Chemosphere; 2005 May; 59(6):753-9. PubMed ID: 15811403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+.
    Huang YH; Zhang TC
    Water Res; 2005 May; 39(9):1751-60. PubMed ID: 15899273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).
    Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H
    Water Res; 2015 May; 75():224-48. PubMed ID: 25770444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.
    Ying D; Peng J; Xu X; Li K; Wang Y; Jia J
    J Hazard Mater; 2012 Aug; 229-230():426-33. PubMed ID: 22771343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the mechanism of clofibric acid removal in Fe(0)/H2O systems.
    Ghauch A; Abou Assi H; Tuqan A
    J Hazard Mater; 2010 Apr; 176(1-3):48-55. PubMed ID: 19944526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.
    Zhou Z; Qiao W; Lin Y; Shen X; Hu D; Zhang J; Jiang LM; Wang L
    Water Sci Technol; 2014; 70(3):524-32. PubMed ID: 25098884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.