These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29207474)

  • 41. The mitoribosomes.
    Curgy JJ
    Biol Cell; 1985; 54(1):1-38. PubMed ID: 3161566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deficiency of mitoribosomal S10 protein affects translation and splicing in Arabidopsis mitochondria.
    Kwasniak-Owczarek M; Kazmierczak U; Tomal A; Mackiewicz P; Janska H
    Nucleic Acids Res; 2019 Dec; 47(22):11790-11806. PubMed ID: 31732734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The plant mitochondrial genome: dynamics and maintenance.
    Gualberto JM; Mileshina D; Wallet C; Niazi AK; Weber-Lotfi F; Dietrich A
    Biochimie; 2014 May; 100():107-20. PubMed ID: 24075874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice.
    Zhao DS; Zhang CQ; Li QF; Yang QQ; Gu MH; Liu QQ
    Plant Mol Biol; 2016 May; 91(1-2):161-77. PubMed ID: 26873698
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential Participation of Plant Ribosomal Proteins from the Small Ribosomal Subunit in Protein Translation under Stress.
    Fakih Z; Plourde MB; Germain H
    Biomolecules; 2023 Jul; 13(7):. PubMed ID: 37509195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development.
    Romani I; Tadini L; Rossi F; Masiero S; Pribil M; Jahns P; Kater M; Leister D; Pesaresi P
    Plant J; 2012 Dec; 72(6):922-34. PubMed ID: 22900828
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental approaches to studying translation in plant semi-autonomous organelles.
    Kwasniak-Owczarek M; Janska H
    J Exp Bot; 2024 Sep; 75(17):5175-5187. PubMed ID: 38592734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein substitution in chloroplast ribosome evolution. A eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach.
    Bubunenko MG; Schmidt J; Subramanian AR
    J Mol Biol; 1994 Jul; 240(1):28-41. PubMed ID: 8021938
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The plant mitochondrial protein import apparatus - the differences make it interesting.
    Murcha MW; Wang Y; Narsai R; Whelan J
    Biochim Biophys Acta; 2014 Apr; 1840(4):1233-45. PubMed ID: 24080405
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein.
    Woellhaf MW; Sommer F; Schroda M; Herrmann JM
    Mol Biol Cell; 2016 Oct; 27(20):3031-3039. PubMed ID: 27582385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The E domains of pentatricopeptide repeat proteins from different organelles are not functionally equivalent for RNA editing.
    Chateigner-Boutin AL; Colas des Francs-Small C; Fujii S; Okuda K; Tanz SK; Small I
    Plant J; 2013 Jun; 74(6):935-45. PubMed ID: 23521509
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plant-Specific Features of Ribosome Biogenesis.
    Weis BL; Kovacevic J; Missbach S; Schleiff E
    Trends Plant Sci; 2015 Nov; 20(11):729-740. PubMed ID: 26459664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Abnormal Expression of Mitochondrial Ribosomal Proteins and Their Encoding Genes with Cell Apoptosis and Diseases.
    Huang G; Li H; Zhang H
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33238645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial Lon1 has a role in homeostasis of the mitochondrial ribosome and pentatricopeptide repeat proteins in plants.
    Li L; Millar AH; Huang S
    Plant Signal Behav; 2017 Feb; 12(2):e1276686. PubMed ID: 28045582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A role for the ribosome in development.
    Byrne ME
    Trends Plant Sci; 2009 Sep; 14(9):512-9. PubMed ID: 19716746
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses.
    Berkowitz O; De Clercq I; Van Breusegem F; Whelan J
    Plant Cell Environ; 2016 May; 39(5):1127-39. PubMed ID: 26763171
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease.
    Gonçalves AM; Pereira-Santos AR; Esteves AR; Cardoso SM; Empadinhas N
    Antioxid Redox Signal; 2021 Mar; 34(8):694-711. PubMed ID: 32098485
    [No Abstract]   [Full Text] [Related]  

  • 58. Partial purification of mitochondrial ribosomes from broad bean and identification of proteins encoded by the mitochondrial genome.
    Maffey L; Degand H; Boutry M
    Mol Gen Genet; 1997 Apr; 254(4):365-71. PubMed ID: 9180689
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SET domain proteins in plant development.
    Thorstensen T; Grini PE; Aalen RB
    Biochim Biophys Acta; 2011 Aug; 1809(8):407-20. PubMed ID: 21664308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice.
    Zheng M; Wang Y; Liu X; Sun J; Wang Y; Xu Y; Lv J; Long W; Zhu X; Guo X; Jiang L; Wang C; Wan J
    J Exp Bot; 2016 May; 67(11):3457-69. PubMed ID: 27241493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.