These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 29207475)
1. Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs). Hodges WM; O'Brien F; Fulzele S; Hamrick MW Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29207475 [TBL] [Abstract][Full Text] [Related]
2. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Deng Y; Zhou H; Zou D; Xie Q; Bi X; Gu P; Fan X Biomaterials; 2013 Sep; 34(28):6717-28. PubMed ID: 23768901 [TBL] [Abstract][Full Text] [Related]
3. Baculovirus-Mediated miR-214 Knockdown Shifts Osteoporotic ASCs Differentiation and Improves Osteoporotic Bone Defects Repair. Li KC; Chang YH; Hsu MN; Lo SC; Li WH; Hu YC Sci Rep; 2017 Nov; 7(1):16225. PubMed ID: 29176755 [TBL] [Abstract][Full Text] [Related]
4. Knockdown of MiR-140-5 promotes osteogenesis of adipose-derived mesenchymal stem cells by targeting TLR4 and BMP2 and promoting fracture healing in the atrophic nonunion rat model. Guo PY; Wu LF; Xiao ZY; Huang TL; Li X Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):2112-2124. PubMed ID: 30915756 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Lee SJ; Kang SW; Do HJ; Han I; Shin DA; Kim JH; Lee SH Biomaterials; 2010 Jul; 31(21):5652-9. PubMed ID: 20413153 [TBL] [Abstract][Full Text] [Related]
6. Spheroids from adipose-derived stem cells exhibit an miRNA profile of highly undifferentiated cells. Di Stefano AB; Grisafi F; Castiglia M; Perez A; Montesano L; Gulino A; Toia F; Fanale D; Russo A; Moschella F; Leto Barone AA; Cordova A J Cell Physiol; 2018 Nov; 233(11):8778-8789. PubMed ID: 29797571 [TBL] [Abstract][Full Text] [Related]
8. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Ongaro A; Pellati A; Bagheri L; Fortini C; Setti S; De Mattei M Bioelectromagnetics; 2014 Sep; 35(6):426-36. PubMed ID: 25099126 [TBL] [Abstract][Full Text] [Related]
9. A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Zhang WB; Zhong WJ; Wang L Bone; 2014 Jan; 58():59-66. PubMed ID: 24091133 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Liao YH; Chang YH; Sung LY; Li KC; Yeh CL; Yen TC; Hwang SM; Lin KJ; Hu YC Biomaterials; 2014 Jun; 35(18):4901-10. PubMed ID: 24674465 [TBL] [Abstract][Full Text] [Related]
11. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Li H; Li T; Wang S; Wei J; Fan J; Li J; Han Q; Liao L; Shao C; Zhao RC Stem Cell Res; 2013 May; 10(3):313-24. PubMed ID: 23399447 [TBL] [Abstract][Full Text] [Related]
12. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells. Qadir AS; Um S; Lee H; Baek K; Seo BM; Lee G; Kim GS; Woo KM; Ryoo HM; Baek JH J Cell Biochem; 2015 May; 116(5):730-42. PubMed ID: 25424317 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms of FGF-2 inhibitory activity in the osteogenic context of mouse adipose-derived stem cells (mASCs). Quarto N; Wan DC; Longaker MT Bone; 2008 Jun; 42(6):1040-52. PubMed ID: 18420480 [TBL] [Abstract][Full Text] [Related]
14. Adipose-derived stem cells and BMP2: part 2. BMP2 may not influence the osteogenic fate of human adipose-derived stem cells. Zuk P; Chou YF; Mussano F; Benhaim P; Wu BM Connect Tissue Res; 2011 Apr; 52(2):119-32. PubMed ID: 20701465 [TBL] [Abstract][Full Text] [Related]
15. Osteogenic differentiation potential of adipose-derived stem cells from ovariectomized mice. Wang L; Huang C; Li Q; Xu X; Liu L; Huang K; Cai X; Xiao J Cell Prolif; 2017 Apr; 50(2):. PubMed ID: 28090705 [TBL] [Abstract][Full Text] [Related]
16. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration. Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects. Wang Z; Zhang D; Hu Z; Cheng J; Zhuo C; Fang X; Xing Y Mol Med Rep; 2015 Sep; 12(3):3345-3350. PubMed ID: 25997460 [TBL] [Abstract][Full Text] [Related]
18. microRNA-132 inhibits osteogenic differentiation of periodontal ligament stem cells via GDF5 and the NF-κB signaling pathway. Xu Y; Ren C; Zhao X; Wang W; Zhang N Pathol Res Pract; 2019 Dec; 215(12):152722. PubMed ID: 31718857 [TBL] [Abstract][Full Text] [Related]
19. Electrical Stimulation of Adipose-Derived Stem Cells in 3D Nanofibrillar Cellulose Increases Their Osteogenic Potential. Bicer M; Sheard J; Iandolo D; Boateng SY; Cottrell GS; Widera D Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33353222 [TBL] [Abstract][Full Text] [Related]
20. MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. Ma X; Fan C; Wang Y; Du Y; Zhu Y; Liu H; Lv L; Liu Y; Zhou Y J Cell Physiol; 2020 Feb; 235(2):909-919. PubMed ID: 31241766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]