These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
521 related articles for article (PubMed ID: 29207947)
1. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits. Gebreyesus G; Lund MS; Buitenhuis B; Bovenhuis H; Poulsen NA; Janss LG Genet Sel Evol; 2017 Dec; 49(1):89. PubMed ID: 29207947 [TBL] [Abstract][Full Text] [Related]
2. Genomic Prediction Using Multi-trait Weighted GBLUP Accounting for Heterogeneous Variances and Covariances Across the Genome. Karaman E; Lund MS; Anche MT; Janss L; Su G G3 (Bethesda); 2018 Nov; 8(11):3549-3558. PubMed ID: 30194089 [TBL] [Abstract][Full Text] [Related]
3. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Su G; Christensen OF; Janss L; Lund MS J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495 [TBL] [Abstract][Full Text] [Related]
4. Genomic prediction of breeding values using previously estimated SNP variances. Calus MP; Schrooten C; Veerkamp RF Genet Sel Evol; 2014 Sep; 46(1):52. PubMed ID: 25928875 [TBL] [Abstract][Full Text] [Related]
5. Value of sharing cow reference population between countries on reliability of genomic prediction for milk yield traits. Haile-Mariam M; MacLeod IM; Bolormaa S; Schrooten C; O'Connor E; de Jong G; Daetwyler HD; Pryce JE J Dairy Sci; 2020 Feb; 103(2):1711-1728. PubMed ID: 31864746 [TBL] [Abstract][Full Text] [Related]
6. Reliability of genomic prediction for milk fatty acid composition by using a multi-population reference and incorporating GWAS results. Gebreyesus G; Bovenhuis H; Lund MS; Poulsen NA; Sun D; Buitenhuis B Genet Sel Evol; 2019 Apr; 51(1):16. PubMed ID: 31029078 [TBL] [Abstract][Full Text] [Related]
7. The patterns of genomic variances and covariances across genome for milk production traits between Chinese and Nordic Holstein populations. Li X; Lund MS; Janss L; Wang C; Ding X; Zhang Q; Su G BMC Genet; 2017 Mar; 18(1):26. PubMed ID: 28298201 [TBL] [Abstract][Full Text] [Related]
8. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related]
9. Including overseas performance information in genomic evaluations of Australian dairy cattle. Haile-Mariam M; Pryce JE; Schrooten C; Hayes BJ J Dairy Sci; 2015 May; 98(5):3443-59. PubMed ID: 25771052 [TBL] [Abstract][Full Text] [Related]
10. Multi-trait single-step genomic prediction accounting for heterogeneous (co)variances over the genome. Karaman E; Lund MS; Su G Heredity (Edinb); 2020 Feb; 124(2):274-287. PubMed ID: 31641237 [TBL] [Abstract][Full Text] [Related]
11. Optimizing genomic prediction for Australian Red dairy cattle. van den Berg I; MacLeod IM; Reich CM; Breen EJ; Pryce JE J Dairy Sci; 2020 Jul; 103(7):6276-6298. PubMed ID: 32331891 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array. Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318 [TBL] [Abstract][Full Text] [Related]
13. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. van Binsbergen R; Calus MP; Bink MC; van Eeuwijk FA; Schrooten C; Veerkamp RF Genet Sel Evol; 2015 Sep; 47(1):71. PubMed ID: 26381777 [TBL] [Abstract][Full Text] [Related]
14. Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants. Fragomeni BO; Lourenco DAL; Legarra A; VanRaden PM; Misztal I J Dairy Sci; 2019 Nov; 102(11):10012-10019. PubMed ID: 31495612 [TBL] [Abstract][Full Text] [Related]
15. Performances of Adaptive MultiBLUP, Bayesian regressions, and weighted-GBLUP approaches for genomic predictions in Belgian Blue beef cattle. Gualdrón Duarte JL; Gori AS; Hubin X; Lourenco D; Charlier C; Misztal I; Druet T BMC Genomics; 2020 Aug; 21(1):545. PubMed ID: 32762654 [TBL] [Abstract][Full Text] [Related]
16. A multi-trait Bayesian method for mapping QTL and genomic prediction. Kemper KE; Bowman PJ; Hayes BJ; Visscher PM; Goddard ME Genet Sel Evol; 2018 Mar; 50(1):10. PubMed ID: 29571285 [TBL] [Abstract][Full Text] [Related]
17. Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses. Liu A; Lund MS; Boichard D; Karaman E; Guldbrandtsen B; Fritz S; Aamand GP; Nielsen US; Sahana G; Wang Y; Su G Genet Sel Evol; 2020 Aug; 52(1):48. PubMed ID: 32799816 [TBL] [Abstract][Full Text] [Related]
18. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection. Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121 [TBL] [Abstract][Full Text] [Related]
19. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Liu A; Lund MS; Boichard D; Karaman E; Fritz S; Aamand GP; Nielsen US; Wang Y; Su G Heredity (Edinb); 2020 Jan; 124(1):37-49. PubMed ID: 31278370 [TBL] [Abstract][Full Text] [Related]