These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1212 related articles for article (PubMed ID: 29207961)

  • 1. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts.
    Jakobsen JC; Gluud C; Wetterslev J; Winkel P
    BMC Med Res Methodol; 2017 Dec; 17(1):162. PubMed ID: 29207961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are missing data adequately handled in cluster randomised trials? A systematic review and guidelines.
    Díaz-Ordaz K; Kenward MG; Cohen A; Coleman CL; Eldridge S
    Clin Trials; 2014 Oct; 11(5):590-600. PubMed ID: 24902924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials.
    Manca A; Palmer S
    Appl Health Econ Health Policy; 2005; 4(2):65-75. PubMed ID: 16162026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handling of Missing Outcome Data in Acute Stroke Trials: Advantages of Multiple Imputation Using Baseline and Postbaseline Variables.
    Young-Saver DF; Gornbein J; Starkman S; Saver JL
    J Stroke Cerebrovasc Dis; 2018 Dec; 27(12):3662-3669. PubMed ID: 30297167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handling trial participants with missing outcome data when conducting a meta-analysis: a systematic survey of proposed approaches.
    Akl EA; Kahale LA; Agoritsas T; Brignardello-Petersen R; Busse JW; Carrasco-Labra A; Ebrahim S; Johnston BC; Neumann I; Sola I; Sun X; Vandvik P; Zhang Y; Alonso-Coello P; Guyatt G
    Syst Rev; 2015 Jul; 4():98. PubMed ID: 26202162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level.
    Rombach I; Gray AM; Jenkinson C; Murray DW; Rivero-Arias O
    BMC Med Res Methodol; 2018 Aug; 18(1):87. PubMed ID: 30153796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.
    Hossain A; Diaz-Ordaz K; Bartlett JW
    Stat Methods Med Res; 2017 Jun; 26(3):1543-1562. PubMed ID: 27177885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the handling of missing longitudinal outcome data in clinical trials.
    Powney M; Williamson P; Kirkham J; Kolamunnage-Dona R
    Trials; 2014 Jun; 15():237. PubMed ID: 24947664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple imputation methods for bivariate outcomes in cluster randomised trials.
    DiazOrdaz K; Kenward MG; Gomes M; Grieve R
    Stat Med; 2016 Sep; 35(20):3482-96. PubMed ID: 26990655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of handling missing data for treatment response in osteoarthritis: a simulation study.
    Olsen IC; Kvien TK; Uhlig T
    Osteoarthritis Cartilage; 2012 Aug; 20(8):822-8. PubMed ID: 22441031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic review of randomised controlled trials in rheumatoid arthritis: the reporting and handling of missing data in composite outcomes.
    Ibrahim F; Tom BD; Scott DL; Prevost AT
    Trials; 2016 Jun; 17(1):272. PubMed ID: 27255212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Should multiple imputation be the method of choice for handling missing data in randomized trials?
    Sullivan TR; White IR; Salter AB; Ryan P; Lee KJ
    Stat Methods Med Res; 2018 Sep; 27(9):2610-2626. PubMed ID: 28034175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis and handling of missing data in cluster randomized trials: a systematic review.
    Fiero MH; Huang S; Oren E; Bell ML
    Trials; 2016 Feb; 17():72. PubMed ID: 26862034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identify the most appropriate imputation method for handling missing values in clinical structured datasets: a systematic review.
    Afkanpour M; Hosseinzadeh E; Tabesh H
    BMC Med Res Methodol; 2024 Aug; 24(1):188. PubMed ID: 39198744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reporting missing participant data in randomised trials: systematic survey of the methodological literature and a proposed guide.
    Akl EA; Shawwa K; Kahale LA; Agoritsas T; Brignardello-Petersen R; Busse JW; Carrasco-Labra A; Ebrahim S; Johnston BC; Neumann I; Sola I; Sun X; Vandvik P; Zhang Y; Alonso-Coello P; Guyatt GH
    BMJ Open; 2015 Dec; 5(12):e008431. PubMed ID: 26719310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic survey of the methods literature on the reporting quality and optimal methods of handling participants with missing outcome data for continuous outcomes in randomized controlled trials.
    Zhang Y; Alyass A; Vanniyasingam T; Sadeghirad B; Flórez ID; Pichika SC; Kennedy SA; Abdulkarimova U; Zhang Y; Iljon T; Morgano GP; Colunga Lozano LE; Aloweni FAB; Lopes LC; Yepes-Nuñez JJ; Fei Y; Wang L; Kahale LA; Meyre D; Akl EA; Thabane L; Guyatt GH
    J Clin Epidemiol; 2017 Aug; 88():67-80. PubMed ID: 28579378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dealing with missing outcome data in randomized trials and observational studies.
    Groenwold RH; Donders AR; Roes KC; Harrell FE; Moons KG
    Am J Epidemiol; 2012 Feb; 175(3):210-7. PubMed ID: 22262640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addressing missing participant outcome data in dental clinical trials.
    Spineli LM; Fleming PS; Pandis N
    J Dent; 2015 Jun; 43(6):605-18. PubMed ID: 25837533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Best (but oft-forgotten) practices: missing data methods in randomized controlled nutrition trials.
    Li P; Stuart EA
    Am J Clin Nutr; 2019 Mar; 109(3):504-508. PubMed ID: 30793174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explicating the Conditions Under Which Multilevel Multiple Imputation Mitigates Bias Resulting from Random Coefficient-Dependent Missing Longitudinal Data.
    Gottfredson NC; Sterba SK; Jackson KM
    Prev Sci; 2017 Jan; 18(1):12-19. PubMed ID: 27866307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.