BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 29208216)

  • 1. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome.
    Ghodasara P; Sadowski P; Satake N; Kopp S; Mills PC
    Vet J; 2017 Dec; 230():6-12. PubMed ID: 29208216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry.
    Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W
    J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species.
    Soares R; Franco C; Pires E; Ventosa M; Palhinhas R; Koci K; Martinho de Almeida A; Varela Coelho A
    J Proteomics; 2012 Jul; 75(14):4190-206. PubMed ID: 22543184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-depth comparative proteomic analysis of yeast proteome using iTRAQ and SWATH based MS.
    Basak T; Bhat A; Malakar D; Pillai M; Sengupta S
    Mol Biosyst; 2015 Aug; 11(8):2135-43. PubMed ID: 26099114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics in veterinary medicine: applications and trends in disease pathogenesis and diagnostics.
    Ceciliani F; Eckersall D; Burchmore R; Lecchi C
    Vet Pathol; 2014 Mar; 51(2):351-62. PubMed ID: 24045891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SWATH Mass Spectrometry for Proteomics of Non-Depleted Plasma.
    Krisp C; Molloy MP
    Methods Mol Biol; 2017; 1619():373-383. PubMed ID: 28674897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry-based proteomic quest for diabetes biomarkers.
    Shao S; Guo T; Aebersold R
    Biochim Biophys Acta; 2015 Jun; 1854(6):519-27. PubMed ID: 25556002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing SRM and SWATH Methods for Quantitation of Bovine Muscle Proteomes.
    Wu W; Dai RT; Bendixen E
    J Agric Food Chem; 2019 Feb; 67(5):1608-1618. PubMed ID: 30624930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging homologies for cross-species plasma proteomics in ungulates using data-independent acquisition.
    Noor Z; Paramasivan S; Ghodasara P; Chemonges S; Gupta R; Kopp S; Mills PC; Ranganathan S; Satake N; Sadowski P
    J Proteomics; 2022 Jan; 250():104384. PubMed ID: 34601153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive proteomic analysis of Penicillium verrucosum.
    Nöbauer K; Hummel K; Mayrhofer C; Ahrens M; Setyabudi FMC; Schmidt-Heydt M; Eisenacher M; Razzazi-Fazeli E
    Proteomics; 2017 May; 17(9):. PubMed ID: 28267294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of dried sea cucumber (Apostichopus japonicus) products from different geographical origins by sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomic analysis and chemometrics.
    Zhang H; Zhang X; Zhao X; Xu J; Lin C; Jing P; Hu L; Zhao S; Wang X; Li B
    Food Chem; 2019 Feb; 274():592-602. PubMed ID: 30372983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking genome-editing and associated molecular perturbations by SWATH mass spectrometry.
    Lin Q; Low LWL; Lau A; Chua EWL; Matsuoka Y; Lian Y; Monteiro A; Tate S; Gunaratne J; Carney TJ
    Sci Rep; 2019 Oct; 9(1):15240. PubMed ID: 31645615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis.
    Goodlett DR; Yi EC
    Funct Integr Genomics; 2002 Sep; 2(4-5):138-53. PubMed ID: 12192588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.
    Gao Y; Lim TK; Lin Q; Li SF
    Electrophoresis; 2016 May; 37(10):1270-6. PubMed ID: 26935773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to Proteomics Technologies.
    Lenz C; Dihazi H
    Methods Mol Biol; 2016; 1362():3-27. PubMed ID: 26519167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing translational research and precision medicine with targeted proteomics.
    Uzozie AC; Aebersold R
    J Proteomics; 2018 Oct; 189():1-10. PubMed ID: 29476807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis.
    Boehmer JL; DeGrasse JA; McFarland MA; Tall EA; Shefcheck KJ; Ward JL; Bannerman DD
    Vet Immunol Immunopathol; 2010 Dec; 138(4):252-66. PubMed ID: 21067814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Changes in Protein Expression Using SWATH Proteomics.
    Braccia C; Liessi N; Armirotti A
    Methods Mol Biol; 2021; 2361():75-94. PubMed ID: 34236656
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.