These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 29208532)
1. Improvement of acidogenic fermentation for volatile fatty acid production from protein-rich substrate in food waste. Yu X; Yin J; Shen D; Shentu J; Long Y; Chen T Waste Manag; 2018 Apr; 74():177-184. PubMed ID: 29208532 [TBL] [Abstract][Full Text] [Related]
2. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Shen D; Yin J; Yu X; Wang M; Long Y; Shentu J; Chen T Bioresour Technol; 2017 Mar; 227():125-132. PubMed ID: 28013128 [TBL] [Abstract][Full Text] [Related]
3. Optimizing food waste hydrothermal parameters to reduce Maillard reaction and increase volatile fatty acid production. Liu J; Yin J; He X; Chen T; Shen D J Environ Sci (China); 2021 May; 103():43-49. PubMed ID: 33743917 [TBL] [Abstract][Full Text] [Related]
4. Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids. Yin J; Liu J; Chen T; Long Y; Shen D Bioresour Technol; 2019 Jul; 284():121-127. PubMed ID: 30927649 [TBL] [Abstract][Full Text] [Related]
5. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Tang J; Wang XC; Hu Y; Zhang Y; Li Y Bioresour Technol; 2017 Jan; 224():544-552. PubMed ID: 27939870 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition. Cheah YK; Dosta J; Mata-Álvarez J Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Wu QL; Guo WQ; Zheng HS; Luo HC; Feng XC; Yin RL; Ren NQ Bioresour Technol; 2016 Sep; 216():653-60. PubMed ID: 27289056 [TBL] [Abstract][Full Text] [Related]
8. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. He X; Yin J; Liu J; Chen T; Shen D Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828 [TBL] [Abstract][Full Text] [Related]
10. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production. Hussain A; Filiatrault M; Guiot SR Bioresour Technol; 2017 Dec; 245(Pt A):1-9. PubMed ID: 28892677 [TBL] [Abstract][Full Text] [Related]
11. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095 [TBL] [Abstract][Full Text] [Related]
12. Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement. Zhang D; Fu X; Jia S; Dai L; Wu B; Dai X Environ Sci Pollut Res Int; 2016 Jan; 23(2):1492-504. PubMed ID: 26374544 [TBL] [Abstract][Full Text] [Related]
13. Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: Synergism between food and paper components. Soomro AF; Abbasi IA; Ni Z; Ying L; Liu J Bioresour Technol; 2020 May; 304():122980. PubMed ID: 32062392 [TBL] [Abstract][Full Text] [Related]
14. Hydrolytic and acidogenic fermentation potential of food waste with source segregated feces-without-urine as co-substrate. Rajagopal R; Ahamed A; Wang JY Bioresour Technol; 2014 Sep; 167():564-8. PubMed ID: 25022801 [TBL] [Abstract][Full Text] [Related]
15. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Yin J; Yu X; Zhang Y; Shen D; Wang M; Long Y; Chen T Bioresour Technol; 2016 Sep; 216():996-1003. PubMed ID: 27343452 [TBL] [Abstract][Full Text] [Related]
17. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste. Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776 [TBL] [Abstract][Full Text] [Related]
18. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane. Sarkar O; Venkata Mohan S Bioresour Technol; 2017 Oct; 242():68-76. PubMed ID: 28583405 [TBL] [Abstract][Full Text] [Related]
19. Improved bioconversion of volatile fatty acids from waste activated sludge by pretreatment. Liu XL; Liu H; Du GC; Chen J Water Environ Res; 2009 Jan; 81(1):13-20. PubMed ID: 19280895 [TBL] [Abstract][Full Text] [Related]
20. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation. Khiewwijit R; Temmink H; Labanda A; Rijnaarts H; Keesman KJ Bioresour Technol; 2015 Dec; 197():295-301. PubMed ID: 26342342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]