BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 29208711)

  • 1. Molecular basis for the recognition of the human AAUAAA polyadenylation signal.
    Sun Y; Zhang Y; Hamilton K; Manley JL; Shi Y; Walz T; Tong L
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1419-E1428. PubMed ID: 29208711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical characterizations of the recognition of the AAUAAA polyadenylation signal.
    Hamilton K; Sun Y; Tong L
    RNA; 2019 Dec; 25(12):1673-1680. PubMed ID: 31462423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex.
    Clerici M; Faini M; Muckenfuss LM; Aebersold R; Jinek M
    Nat Struct Mol Biol; 2018 Feb; 25(2):135-138. PubMed ID: 29358758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex.
    Clerici M; Faini M; Aebersold R; Jinek M
    Elife; 2017 Dec; 6():. PubMed ID: 29274231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for the recognition of the AUUAAA polyadenylation signal by mPSF.
    Gutierrez PA; Wei J; Sun Y; Tong L
    RNA; 2022 Nov; 28(11):1534-1541. PubMed ID: 36130077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing.
    Chan SL; Huppertz I; Yao C; Weng L; Moresco JJ; Yates JR; Ule J; Manley JL; Shi Y
    Genes Dev; 2014 Nov; 28(21):2370-80. PubMed ID: 25301780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
    Schönemann L; Kühn U; Martin G; Schäfer P; Gruber AR; Keller W; Zavolan M; Wahle E
    Genes Dev; 2014 Nov; 28(21):2381-93. PubMed ID: 25301781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease.
    Mandel CR; Kaneko S; Zhang H; Gebauer D; Vethantham V; Manley JL; Tong L
    Nature; 2006 Dec; 444(7121):953-6. PubMed ID: 17128255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent molecular insights into canonical pre-mRNA 3'-end processing.
    Sun Y; Hamilton K; Tong L
    Transcription; 2020 Apr; 11(2):83-96. PubMed ID: 32522085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism for the interaction between human CPSF30 and hFip1.
    Hamilton K; Tong L
    Genes Dev; 2020 Dec; 34(23-24):1753-1761. PubMed ID: 33122294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insights into the Human Pre-mRNA 3'-End Processing Machinery.
    Zhang Y; Sun Y; Shi Y; Walz T; Tong L
    Mol Cell; 2020 Feb; 77(4):800-809.e6. PubMed ID: 31810758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding RNA Binding by the Nonclassical Zinc Finger Protein CPSF30, a Key Factor in Polyadenylation during Pre-mRNA Processing.
    Pritts JD; Oluyadi AA; Huang W; Shimberg GD; Kane MA; Wilks A; Michel SLJ
    Biochemistry; 2021 Mar; 60(10):780-790. PubMed ID: 33615774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3'-end formation.
    Murthy KG; Manley JL
    Genes Dev; 1995 Nov; 9(21):2672-83. PubMed ID: 7590244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor.
    Kühn U; Gündel M; Knoth A; Kerwitz Y; Rüdel S; Wahle E
    J Biol Chem; 2009 Aug; 284(34):22803-14. PubMed ID: 19509282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.
    Bilger A; Fox CA; Wahle E; Wickens M
    Genes Dev; 1994 May; 8(9):1106-16. PubMed ID: 7926790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase.
    Nag A; Narsinh K; Martinson HG
    Nat Struct Mol Biol; 2007 Jul; 14(7):662-9. PubMed ID: 17572685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of both structure and function to a defective poly(A) site by in vitro selection.
    Graveley BR; Fleming ES; Gilmartin GM
    J Biol Chem; 1996 Dec; 271(52):33654-63. PubMed ID: 8969235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition.
    Gilmartin GM; Fleming ES; Oetjen J; Graveley BR
    Genes Dev; 1995 Jan; 9(1):72-83. PubMed ID: 7828853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6.
    Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E
    Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that polyadenylation factor CPSF-73 is the mRNA 3' processing endonuclease.
    Ryan K; Calvo O; Manley JL
    RNA; 2004 Apr; 10(4):565-73. PubMed ID: 15037765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.